Skip to main content
Log in

Quality assurance for diffusion tensor imaging using an ACR phantom: Comparative analysis with 6, 15, and 32 directions at 1.5T and 3.0T MRI systems

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Although diffusion tensor imaging (DTI) has been widely used for the quantitative analyses of the integrity of white matter in the brain in clinical and research fields, quality assurance (QA) for DTI has not been fully established. Thus, we suggest a QA guideline for DTI using the American College of Radiology (ACR) Magnetic resonance imaging (MRI) head phantom. In this study, the geometric accuracy, slice-position accuracy, image intensity uniformity, percent signalghosting, low-contrast object detectability, image distortion, fractional anisotropy (FA), and apparent diffusion coefficient (ADC) were measured and evaluated in 1.5T and 3.0T MRI scanners equipped with an 8-channel SENSE head coil. The standard axial spin echo (SE) T1-weighted MR images and DTI with 6, 15 and 32 directions were obtained. Concerning geometric accuracy, image twisting in the three directions was observed due to the inhomogeneity of echo planar imaging (EPI). Image intensity uniformity was significantly lower for DTI than for the standard SE T1-weighted MR images. Percent signal ghosting was higher for images from 3.0T MRI than for images from 1.5T MRI. Low-contrast object detectability was visually identified and measured at a low contrasttonoise ratio (CNR) and a low signaltonoise ratio (SNR). Image distortion changed remarkably to the phaseencoding direction. The present study using the ACR MRI phantom suggests a QA method for DTI with high reproducibility and easy accessibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. D. E. Vaillancourt et al., Neurology 72, 1378 (2009).

    Article  Google Scholar 

  2. M. L. Lipton et al., Radiology 252, 816 (2009).

    Article  Google Scholar 

  3. G. Nicoletti et al., Neurology 74, 988 (2010).

    Article  Google Scholar 

  4. J. G. Raya et al., Radiology 262, 550 (2012).

    Article  Google Scholar 

  5. J. H. Lee et al., Journal of the Korean Physical Society 58, 343 (2011).

    Article  ADS  Google Scholar 

  6. S. Mattila et al., Magn. Reson Med 57, 754 (2007).

    Article  ADS  Google Scholar 

  7. N. Yanasak and J. Allison, Magn. Reson Imaging 24, 1349 (2006).

    Article  Google Scholar 

  8. C. C. Chen, Y. L. Wan, Y. Y. Wai and H. L. Liu, J. Digit Imaging 17, 279 (2004).

    Article  Google Scholar 

  9. Z. J. Wang, Y. Seo, J. M. Chia and N. K. Rollins, Med. Phys. 38, 4415 (2011).

    Article  Google Scholar 

  10. http://www.acr.org/accreditation/mri.

  11. P. S. Tofts et al., Magn. Reson Med. 43, 368 (2000).

    Article  Google Scholar 

  12. M. Holz, S. R. Heil, A. Sacco, Phys. Chem. Chem. Phys 2, 4740 (2000).

    Article  Google Scholar 

  13. O. Dietrich, M. F. Reiser, S. O. Schoenberg, Eur. J. Radiol. 65, 29 (2008).

    Article  Google Scholar 

  14. Q. X. Yang et al., Magn. Reson Med. 52, 1418 (2004).

    Article  Google Scholar 

  15. M. A. Horsfield, Magn. Reson Imaging 17, 1335 (1999).

    Article  Google Scholar 

  16. N. Chen and A. M. Wyrwicz, Magn. Reson Med. 45, 525 (2001).

    Article  Google Scholar 

  17. J. L. R. Andersson, S. Skare and J. Ashburner, Neuroimage 20, 870 (2003).

    Article  Google Scholar 

  18. G. K. Rohde et al., Magn. Reson Med. 51, 103 (2004).

    Article  Google Scholar 

  19. T. Jaermann et al., Magn. Reson Med. 51, 230 (2004).

    Article  Google Scholar 

  20. P. J. Basser, NMR Biomed 8, 333 (1995).

    Article  Google Scholar 

  21. T. Jaermann et al., Magn. Reson Med. 51, 230 (2004).

    Article  Google Scholar 

  22. D. K. Jones, Magn. Reson Med. 51, 807 (2004).

    Article  Google Scholar 

  23. B. A. Landman et al., NeuroImage 36, 1123 (2007).

    Article  Google Scholar 

  24. I. Delakis, E. M. Moore, M. O. Leach and J. P. D. De Wilde, Phys. Med. Biol. 49, 1409 (2004).

    Article  Google Scholar 

  25. S. J. Teipel et al., Psychiatry Res 194, 363 (2011).

    Article  Google Scholar 

  26. M. Watanabe et al., Radiat Med. 24, 605 (2006).

    Article  Google Scholar 

  27. C. Reischauer, P. Staempfli, T. Jaermann and P. Boesiger, J. Magn. Reson Imaging 29, 692 (2009).

    Article  Google Scholar 

  28. E. Farrher et al., Magn. Reson Imaging 30, 518 (2012).

    Article  Google Scholar 

  29. P. Pullens, Roebroeck A, Goebel R, J. Magn. Reson Imaging 32, 482 (2010).

    Article  Google Scholar 

  30. J. Berberat et al., Acta Radiol 54, 576 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Young Choe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JH., Kim, SY., Lee, DW. et al. Quality assurance for diffusion tensor imaging using an ACR phantom: Comparative analysis with 6, 15, and 32 directions at 1.5T and 3.0T MRI systems. Journal of the Korean Physical Society 65, 103–110 (2014). https://doi.org/10.3938/jkps.65.103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.103

Keywords

Navigation