Skip to main content
Log in

Influences of Au nanoparticle density on the performance of GaAs solar cells

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The influence of the Au nanoparticle density on the performance of single-junction GaAs solar cells has been investigated. The single-junction GaAs solar cells are grown on (100) GaAs substrates by using a low-pressure metalorganic chemical vapor deposition (MOCVD) system. Au nanoparticles are dispersed on the surfaces of the cells by micro-pipetted casting and the density of the dispersed nanoparticles varies from 4.7 × 109 to 4.3 × 1010 cm−2. The conversion efficiencies of the GaAs solar cells are observed to depend strongly on the Au nanoparticle densities. For Au nanoparticle densities lower than 2.8 × 1010 cm−2, the conversion efficiency improvement of the GaAs solar cells mainly originates from the antireflection coating effect. In contrast, for the sample with a Au nanoparticle density of 2.8 × 1010 cm−2, the antireflection effect decreases due to the shadow effect and the local field enhancement effect due to the Au nanoparticles starts to be effective. The GaAs solar cell with a Au nanoparticle density of 1.9 × 1010 cm−2 shows a maximum conversion enhancement compared to that of the reference sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. A. Chang, Z. Y. Li, H. C. Kuo, T. C. Lu, S. F. Yang, L. W. Lai, L. H. Lai and S. C. Wang, Semicond. Sci. Technol. 24, 085007 (2009).

    Article  ADS  Google Scholar 

  2. A. Alemu, A. Freundlich, N. Badi, C. Boney and A. Bensaoula, Solar Energy Mater. Solar Cells 94, 921 (2010).

    Article  Google Scholar 

  3. J. H. Selj, A. Thøersen, S. E. Foss and E. S. Marstein, J. Appl. Phys. 107, 074904 (2010).

    Article  ADS  Google Scholar 

  4. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif and N. H. Karam, Appl. Phys. Lett. 90, 183516 (2007).

    Article  ADS  Google Scholar 

  5. A. P. Kirk, Solar Energy Mater. Solar Cells 94, 2442 (2010).

    Article  Google Scholar 

  6. M. Stan, D. Aiken, B. Cho, A. Cornfeld, J. Diaz, V. Ley, A. Korostyshevsky, P. Patel, P. Sharps and T. Varghese, J. of Crys. Growth 310, 5204 (2008).

    Article  ADS  Google Scholar 

  7. H. A. Atwater and A. Polman, Nature Mater. 9, 205 (2010).

    Article  ADS  Google Scholar 

  8. K. R. Catchpole and A. Polman, Optics Express 16, 21793 (2008).

    Article  ADS  Google Scholar 

  9. N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi and M. Gu, Opt. Mater. Express 2, 190 (2012).

    Article  Google Scholar 

  10. X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi and M. Gu, Nano Lett. 12, 2187 (2012).

    Article  ADS  Google Scholar 

  11. I. M. Pryce, D. D. Koleske, A. J. Fischer and H. A. Atwater, Appl. Phys. Lett. 96, 153501 (2010).

    Article  ADS  Google Scholar 

  12. M. A. El-Sayed, Acc. Chem. Res. 34, 257 (2001).

    Article  Google Scholar 

  13. S. Fahr, C. Rockstuhl and F. Lederer, Photonics and Nanostructures — Fundamentals and Applications 8, 291 (2010).

    Article  ADS  Google Scholar 

  14. K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    Article  Google Scholar 

  15. K. Nakayama, K. Tanabe and H. A. Atwater, App. Phy. Lett. 93, 121904 (2008).

    Article  ADS  Google Scholar 

  16. Y. Li, R. Peng, X. Xiu, X. Zhang and G. Zhai, Superlattices and Microstructures 50, 511 (2011).

    Article  ADS  Google Scholar 

  17. T. Iida and H. Ishihara, Phys. Rev. Lett. 90, 057403 (2003).

    Article  ADS  Google Scholar 

  18. M. D. Mcmahon, R. Lopez, H. M. Meyer, L. C. Feldman and R. F. J. R. Haglund, Appl. Phys. B 80, 915 (2005).

    Article  ADS  Google Scholar 

  19. L. D. Nguyen, Y. J. Kim, K. Kim, K. Jung, H. K. Kang and J. J. Lee, J. of Crys. Growth 370, 244 (2013).

    Article  ADS  Google Scholar 

  20. C. O. McPheeters, C. J. Hill, S. H. Lim, D. Derkacs, D. Z. Ting and E. T. Yu, J. Appl. Phys. 106, 056101 (2009).

    Article  ADS  Google Scholar 

  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

    Google Scholar 

  22. D. M. Schaadt, B. Feng and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).

    Article  ADS  Google Scholar 

  23. J. Turkevich, G. Garton and P. C. Stevenson, J. Colloid Sci. 9, 26 (1954).

    Article  Google Scholar 

  24. S. H. Lim, W. Mar, P. Matheu, D. Derkacs and E. T. Yu, J. Appl. Phys. 101, 104309 (2007).

    Article  ADS  Google Scholar 

  25. S. Pillai, K. R. Catchpole, T. Trupke and M. A. Green, J. Appl. Phys. 101, 093105 (2007).

    Article  ADS  Google Scholar 

  26. Y. Zhang, X. Chen, Z. Ouyang, H. Lu, B. Jia, Z. Shi and M. Gu, Opt. Mater. Express 3, 489 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaejin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, N.D., Kim, Y., Kim, K. et al. Influences of Au nanoparticle density on the performance of GaAs solar cells. Journal of the Korean Physical Society 64, 868–871 (2014). https://doi.org/10.3938/jkps.64.868

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.868

Keywords

Navigation