Skip to main content
Log in

Effect of annealing temperature on the optical loss and the optical constants of RF-magnetron sputtered carbon — nickel composite films

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this work, the optical properties of carbon — nickel films annealed at different temperatures (300–1000 °C) were investigated. The films were grown on quartz substrates by radio frequency magnetron co-sputtering at room temperature with a deposition time of 600 second. The optical transmittance spectra in the wavelength range 300–1000 nm were used to compute the refractive index by using the Swanepoel’s method. The films annealed at 500 °C showed considerable optical loss due to optical absorption by nickel atoms and to scattering caused by surface roughness. However, the film annealed at 800 °C had a very small optical loss in spite of the high surface roughness. The dispersion curves of the refractive indices of the films had anomalous dispersion in the absorption region and normal dispersion in the transparent region. The dissipation rate of the electromagnetic wave at 500 °C was shown to have maximum value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Endrino, R. Escobar Galindo, H. S. Zhang, M. Allen, R. Gago, A. Espinosa and A. Anders, Surf. Coat. Tech. 202, 3675 (2008).

    Article  Google Scholar 

  2. R. Hauert, Diamond Relat. Mater. 12, 583 (2003).

    Article  ADS  Google Scholar 

  3. R. J. Narayan, Diamond Relat. Mater. 14, 1319 (2005).

    Article  ADS  Google Scholar 

  4. Y. Y. Chang, D. Y. Wang and W. Wu, Thin Solid Films 420–421, 241 (2002).

    Article  Google Scholar 

  5. K. Baba and R. Hatada, Surf. Coat. Tech. 158–159, 272 (2002).

    Google Scholar 

  6. R. Wang, C. Mercer, A. G. Evans, C. V. Cooper and H. K. Yoon, Diamond Relat. Mater. 11, 1797 (2002).

    Article  ADS  Google Scholar 

  7. D. Nilsson, F. Svahn, U. Wiklund and S. Hogmark, Wear 252, 1084 (2003).

    Article  Google Scholar 

  8. T. I. T. Okpalugo, P. D. Maguire, A. A. Ogwu and J. A. D. Mclaughlin, Diamond Relat. Mater. 13, 1549 (2004).

    Article  ADS  Google Scholar 

  9. P. Zhang, B. K. Tay, G. Q. Yu, S. P. Lau and Y. Q. Fu, Diamond Relat. Mater. 13, 459 (2004).

    Article  ADS  Google Scholar 

  10. T. Ghodselahi, M. A. Vesaghi and A. Shafiekhani, J. Phys. D: Appl. Phys. 42, 015308 (2009).

    Article  Google Scholar 

  11. C. J. Zong, J. Luo, B. Fang, B. N. Wanjala and P. N. Njoki, Nanotechnology 21, 1 (2010).

    Google Scholar 

  12. S. H. Jeong, B. S. Kim, B. T. Lee, H. R. Park and J. K. Kim, J. Korean Phys. Soc. 41, 67 (2002).

    Google Scholar 

  13. G. Korotcenkov, S. D. Han and J. R. Stetter, Chem. Rev. 10, 1402 (2009).

    Article  Google Scholar 

  14. D. K. Kambhampati and W. Knoll, Curr. Opin. Colloid Interface Sci. 4, 273 (1999).

    Article  Google Scholar 

  15. K. Tanabe, Mater. lett. 61, 4573 (2007).

    Article  Google Scholar 

  16. Y. Chen, K. Munechika and D. S. Ginger, Nano let. 7, 690 (2007).

    Article  ADS  Google Scholar 

  17. A. Weidlich and A. Wilkie, Eurographics Symp. Rende. 28, 4 (2009).

    Google Scholar 

  18. K. Wasa, M. Kitabatake and H. Adachi, Thin film materials technology: sputtering of compound materials, (William Andriw, INC 2004).

    Google Scholar 

  19. A. Diaz-Parralejo, R. Caruso, A. L. Ortiz and F. Guiberteau, Thin Solid Films 458, 92 (2004).

    Article  ADS  Google Scholar 

  20. E. R. Shaaban, I. S. Yahia and E. G. El-Metwally, Acta Physica Polonica A. 121, 628 (2012).

    Google Scholar 

  21. M. H. Habibi and N. Talebian, Acta Chim. Slov. 52, 53 (2005).

    Google Scholar 

  22. N. F. Mott and E. A. Davis, Electronic Processe in Non-Crystalline Materials, (Clarendon Press, Oxford, 1979).

    Google Scholar 

  23. A. Weidlich and A. Wilkie, Eurographics Symp. Rende. 28, 4 (2009).

    Google Scholar 

  24. M. M. Abbas, A. A. M. Shehab, A. K. Al-Samuraee and N. A. Hassan, Energy Procedia 6, 241 (2011).

    Article  Google Scholar 

  25. G. B. Sakr, I. S. Yahia, M. Fadel, S.S. Fouad and N. Romcevic, J. Alloys Comp. 507, 557 (2010).

    Article  Google Scholar 

  26. M. M. Hassan, A. S. M. A. Haseeb, R. Saidur and H. H. Masjuki, Int. J. Chem. Biol. Engine. 1, 2 (2008).

    Google Scholar 

  27. M. A. Majeed Khan, S. Kumar, M. Ahamed, S. A. Alrokayan, M. S. Alsalhi, M. Alhoshan and A. S. Aldwayyan, Appl. Surf. Sci. 257, 10607 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Elahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalouji, V., Elahi, S.M. Effect of annealing temperature on the optical loss and the optical constants of RF-magnetron sputtered carbon — nickel composite films. Journal of the Korean Physical Society 64, 857–862 (2014). https://doi.org/10.3938/jkps.64.857

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.857

Keywords

Navigation