Skip to main content
Log in

Photoluminescence studies of ZnO films fabricated by using a combination of a hydrothermal method and plasma-assisted molecular beam epitaxy regrowth

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

ZnO films were deposited on Si (100) substrates by using a two-step growth process. In the first step, ZnO nanorods were grown by using the hydrothermal method at 140 °C for 5 min. In the second step, a ZnO amorphous layer was deposited on the ZnO nanorods by spin-coating. After completion of the growth process, the films were annealed at 800 °C for 10 min, and a ZnO active layer was deposited on top of the amorphous layer by using plasma-assisted molecular beam epitaxy. Further, temperature-dependent photoluminescence (PL) measurement were conducted to study the optical properties of the prepared films. In the low-temperature PL spectra, emission peaks in the near-band-edge region were observed at 3.370, 3.362, 3.347, 3.329, 3.317, 3.288, 3.263, 3.219, 3.191, and 3.116 eV; these peaks were attributed to free excitons, neutral donor bound excitons, neutral acceptor donor excitons, two electron satellites, and donor acceptor pairs, respectively. These peaks were red-shifted, and their intensity decreased with increasing temperature. The binding energy of the donor was calculated as 43.1 meV by using the Haynes rule. Further, the value α and β, factors in the equation for the energy of localized excitons of donors and acceptors were obtained as 0.73 meV and 750 K, respectively, by fitting the free exciton (FX) peak according to Varshni’s equation. The full width at half-maximum of PL for the films was about 95.1 meV at room temperature; moreover, the following values were obtained for the films by using theoretical equations: the background impurity broadening, Γ0 = 62 meV, the parameter describing exciton-LO phonon interaction, Γ LO = 80 meV, LO phonon energy, ħω LO = 72 meV, and, the coupling strength of an exciton-acoustic phonon interaction, γ ph = 0.087 meV/K Furthermore, the activation energy was about 60.1 meV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Kang, S. J. Pearton and F. Ren, Appl. Phys. Lett. 90, 083104 (2007).

    Article  ADS  Google Scholar 

  2. Y. Zhang, G. Du, D. Liu, X. Wang, Y. Ma, J. Wang, J. Yin, X. Yang, X. Hou and S. Yang, J. Cryst. Growth 243, 439 (2002).

    Article  ADS  Google Scholar 

  3. B. D. Yao, Y. F. Chan and N. Wang, Appl. Phys. Lett. 81, 757 (2002).

    Article  ADS  Google Scholar 

  4. J. H. Lee, K. H. Ko and B. O. Park, J. Cryst. Growth 247, 119 (2003).

    Article  ADS  Google Scholar 

  5. C. J. Youn, T. S. Jeong, M. S. Han and J. H. Kim, J. Cryst. Growth 261, 526 (2004).

    Article  ADS  Google Scholar 

  6. M. S. Kim et al., J. Cryst. Growth 311, 3568 (2009).

    Article  ADS  Google Scholar 

  7. Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes and R. Yang, Adv. Funct. Mater. 14, 943 (2004).

    Article  Google Scholar 

  8. U. Rau and M. Schmidt, Thin Solid Films 387, 141 (2001).

    Article  ADS  Google Scholar 

  9. Y. Ryu, T. Lee, J. A. Lubguban, H. W. White, B. Kim, Y. Park and C. Youn, Appl. Phys. Lett. 88, 241108 (2006).

    Article  ADS  Google Scholar 

  10. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).

    Article  ADS  Google Scholar 

  11. J. P. Kar, S. N. Das, J. H. Choi, Y. A. Lee, T. Y. Lee and J. M. Myoung, J. Cryst. Growth 311, 3305 (2009).

    Article  ADS  Google Scholar 

  12. P. X. Gao and Z. L. Wang, J. Appl. Phys. 97, 044304 (2005).

    Article  ADS  Google Scholar 

  13. K. Miyamoto, M. Sano, H. Kato and T. Yao, Jpn. J. Appl. Phys. 41, 1203 (2002).

    Article  ADS  Google Scholar 

  14. F. Xiu, Z. Yang, D. Zhao, J. Liu, K. A. Alim, A. A. Balandin, M. E. Itkis and R. C. Haddon, J. Cryst. Growth 286, 61 (2006).

    Article  ADS  Google Scholar 

  15. M. Jung, J. Lee, S. Park, H. Kim and J. Chang, J. Cryst. Growth 283, 384 (2005).

    Article  ADS  Google Scholar 

  16. H. Y. Choi, G. S. Kim, M. Y. Cho, S. M. Jeon, D. Y. Kim, M. S. Kim, K. G. Yim, H. G. Kim and J. Y. Leem, J. Korean Phys. Soc. 57, 469 (2010).

    Article  Google Scholar 

  17. A. B. Djurisic, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen and S. Gwo, Appl. Phys. Lett. 88, 103107 (2006).

    Article  ADS  Google Scholar 

  18. P. M. R. Kumar, K. P. Vijayakumar and C. S. Kartha, J. Mater. Sci 42, 2598 (2007).

    Article  ADS  Google Scholar 

  19. S. A. Studenikin, N. Golego and M. Cocivera, J. Appl. Phys. 84, 2287 (1998).

    Article  ADS  Google Scholar 

  20. S. Kim, M. S. Kim, G. Nam and J. Y. Leem, Electron. Mater. Lett. 8, 445 (2012).

    Article  ADS  Google Scholar 

  21. A. Teke, Ü. Özgür, S. Dogan, X. Gu and H. Morkoç, Ph, Phys. Rev. B 70, 195207 (2004)

    Article  ADS  Google Scholar 

  22. P. Misra, T. K. Sharma and L. M. Kukreja, Curr. Appl. Phys. 9, 179 (2009).

    Article  ADS  Google Scholar 

  23. G. Nam, S. H. Lee, S. Kim, M. S. Kim, D. Y. Kim, K. G. Yim, D. Y. Lee. J. S. Kim, J. S Kim, J. S. Kim, S. O. Kim, J. H. Jung and J. Y. Leem, Jpn. J. Appl. Phys. 51, 021102 (2012).

    ADS  Google Scholar 

  24. W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu and H. B. Yuan, Appl. Phys. Lett. 86, 191911 (2005).

    Article  ADS  Google Scholar 

  25. S. Mandal, M. L. N. Goswami, K. Das. A. Dhar and S. K. Ray, Thin Solid Films 516, 8702 (2008).

    Article  ADS  Google Scholar 

  26. K. Thonke, Th. Gruber, N. Teofilov, R. Sch. onfelder, A. Waag and R. Sauer, Physica B 308, 945 (2001).

    Article  ADS  Google Scholar 

  27. J. R. Haynes, Phys. Rev. Lett. 4, 361 (1960).

    Article  ADS  Google Scholar 

  28. Y. P. Varshni, Physica 34, 149 (1967).

    Article  ADS  Google Scholar 

  29. Y. Zhang, B. Lin, X. Sun and Z. Fu, Appl. Phys. Lett. 86, 131910 (2005).

    Article  ADS  Google Scholar 

  30. H. Shibata, Jpn. J. Appl. Phys. 37, 550 (1998).

    Article  ADS  Google Scholar 

  31. E. H. Bogardus and H. B. Bebb, Phys. Rev. 176, 993 (1968).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Young Leem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y., Kim, B., Leem, JY. et al. Photoluminescence studies of ZnO films fabricated by using a combination of a hydrothermal method and plasma-assisted molecular beam epitaxy regrowth. Journal of the Korean Physical Society 64, 455–460 (2014). https://doi.org/10.3938/jkps.64.455

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.455

Keywords

Navigation