Skip to main content
Log in

Influence of Rashba spin-orbit coupling on Fano-Kondo effect in a parallel double-quantum-dot structure

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Electron transport through a parallel double-quantum-dot structure is theoretically studied with one dot in the Kondo region and the other one in the region of local Rashba interaction. The coupling between the Kondo dot and the electron reservoirs is found to offer a reference channel for electron travels, and the connection of the Rashba dot and the leads is found to afford a resonant channel. The interplay of these two mechanisms gives rise to the Fano effect, which also depends on the adjustment of the Rashba field. We then conclude that in this structure, the Fano interference is more robust because it causes a quenching of the Kondo resonance. In the presence of a local magnetic flux, the quenched Kondo resonance becomes determined by the electron spin, which is helpful for spin manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  ADS  MATH  Google Scholar 

  2. A. E. Miroshnichenko, S. Flach and Y. S. Kivshar, condmat/arXiv:0902.3014.

  3. R. K. Adair, C. K. Bockelman and R. E. Peterson, Phys. Rev. 76, 308 (1949).

    Article  ADS  Google Scholar 

  4. U. Fano and A. R. P. Rau, Atomic Collisions and Spectra (Academic, Orlando, 1986).

    Google Scholar 

  5. F. Cerdeira, T. A. Fjeldly and M. Cardona, Phys. Rev. B 8, 4734 (1973).

    Article  ADS  Google Scholar 

  6. J. Faist, F. Capasso, C. Sirtori, K. W. West and L. N. Pfeiffer, Nature (London) 390, 589 (1997); H. Schmidt, K. L. Campman, A. C. Gossard and A. Imamoglu, Appl. Phys. Lett. 70, 3455 (1997).

    Article  ADS  Google Scholar 

  7. V. Madhavan, W. Chen, T. Jamneala, M. Crommie and S. Wingreen, Science 280, 567 (1998).

    Article  ADS  Google Scholar 

  8. S. Rotter, F. Libisch, J. Burgdöfer, U. Kuhl and H. J. Stökmann, Phys. Rev. E 69, 046208 (2004).

    Article  ADS  Google Scholar 

  9. J. Göres, D. Goldhaber-Gordon, S. Heemeyer and M. A. Kastner, Phys. Rev. B 62, 2188 (2000).

    Article  ADS  Google Scholar 

  10. I. G. Zacharia, D. Goldhaber-Gordon, G. Granger, M. A. Kastner, Y. B. Khavin, H. Shtrikman, D. Mahalu and U. Meirav, Phys. Rev. B 64, 155311 (2001).

    Article  ADS  Google Scholar 

  11. K. Kobayashi, H. Aikawa, S. Katsumoto and Y. Iye, Phys. Rev. Lett. 88, 256806 (2002); Phys. Rev. B 68, 235304 (2003); M. Sato, H. Aikawa, K. Kobayashi, S. Katsumoto, and Y. Iye, Phys. Rev. Lett. 95, 066801 (2005); K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto and Y. Iye, Phys. Rev. B 70, 035319 (2004).

    Article  ADS  Google Scholar 

  12. A. C. Johnson, C. M. Marcus, M. P. Hanson and A. C. Gossard, Phys. Rev. Lett. 93, 106803 (2004).

    Article  ADS  Google Scholar 

  13. A. Fuhrer, P. Brusheim, T. Ihn, M. Sigrist, K. Ensslin, W. Wegscheider and M. Bichler, Phys. Rev. B 73, 205326 (2006).

    Article  ADS  Google Scholar 

  14. A. W. BlickHolleitner, C. R. Decker, H. Qin, K. Eberl and R. H. Blick, Phys. Rev. Lett. 87, 256802 (2001); A. W. Holleitner, R. H. Blick, A. K. Hüttel, K. Eberl and J. P. Kotthaus, Science 297, 70 (2002); A. W. Holleitner, R. H. Blick and K. Eberl Appl. Phys. Lett. 82, 1887 (2003).

    Article  ADS  Google Scholar 

  15. J. C. Chen, A. M. Chang and M. R. Melloch Phys. Rev. Lett. 92, 176801 (2004).

    Article  ADS  Google Scholar 

  16. J. L. D’Amato, H. M. Pastawski and J. F. Weisz, Phys. Rev. B 39, 3554 (1989).

    Article  ADS  Google Scholar 

  17. E. Tekman and P. F. Bagwell, Phys. Rev. B 48, 2553 (1993); J. U. Nökel, and A. D. Stone, Phys. Rev. B 50, 17415 (1994).

    Article  ADS  Google Scholar 

  18. B. R. Bułka and P. Stefański, Phys. Rev. Lett. 86, 5128 (2001).

    Article  ADS  Google Scholar 

  19. W. Hofstetter, J. König, and H. Schoeller, Phys. Rev. Lett. 87, 156803 (2001).

    Article  ADS  Google Scholar 

  20. B. Kubala and J. König, Phys. Rev. B 65, 245301 (2002).

    Article  ADS  Google Scholar 

  21. A. Sila, Y. Oreg, and Y. Gefen, Phys. Rev. B 65, 195316 (2002).

    Article  ADS  Google Scholar 

  22. K. Kang and S. Y. Cho, J. Phys.: Condens. Matter 16, 117 (2004).

    ADS  Google Scholar 

  23. Z. M. Bai, M. F. Yang and Y. C. Chen, J. Phys.: Condens. Matter 16, 4303 (2004).

    Google Scholar 

  24. H. Lu, R. Lü, and B. F. Zhu, Phys. Rev. B 71, 235320 (2005).

    Article  ADS  Google Scholar 

  25. M. L. Ladron de Guevara, F. Claro and P. A. Orellana, Phys. Rev. B 67, 195335 (2003).

    Article  ADS  Google Scholar 

  26. G. H. Ding, C. K. Kim, and K. Nahm, Phys. Rev. B 71, 205313 (2005).

    Article  ADS  Google Scholar 

  27. H. Lu, R. Lü, and B. F. Zhu, J. Phys.:Condens. Matt. 18, 8961 (2006).

    ADS  Google Scholar 

  28. A. A. Clerk, X. Waintal and P. W. Brouwer, Phys. Rev. Lett. 86, 4636 (2001).

    Article  ADS  Google Scholar 

  29. Q. F. Sun, J. Wang and H. Guo, Phys. Rev. B 71, 165310 (2005).

    Article  ADS  Google Scholar 

  30. R. López, D. Sanchez and L. Serra, Phys. Rev. B 76, 035307 (2007).

    Article  ADS  Google Scholar 

  31. Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992); A. P. Jauho, N. S. Wingreen and Y. Meir, Phys. Rev. B 50, 5528 (1994).

    Article  ADS  Google Scholar 

  32. Y. Liu, Y. Zheng, W. Gong and T. Lü, Phys. Rev. B 75, 195316 (2007).

    Article  ADS  Google Scholar 

  33. S. Datta, Electron Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, England, 1997).

    Google Scholar 

  34. F. Chi and S. S. Li, J. Appl. Phys., 100, 113703 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, J., Wang, YG., Wang, Y. et al. Influence of Rashba spin-orbit coupling on Fano-Kondo effect in a parallel double-quantum-dot structure. Journal of the Korean Physical Society 64, 429–435 (2014). https://doi.org/10.3938/jkps.64.429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.429

Keywords

Navigation