Skip to main content
Log in

Effective mass and Landé g-factor in Si-MOSFETs near the critical density

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We analyze the electrical resistivity and conductivity of a dilute two-dimensional electron gas (2DEG) in a Si metal-oxide-semiconductor field-effect transistor. When a magnetic field is applied parallel to the plane of the 2DEG, a signature of complete spin polarization, as evidenced by the saturation of the resistivity, is observed. We measured the effective mass and the Landé g-factor near the metal-insulator transition (MIT) and found that the Landé g-factor remained almost constant and close to its value in bulk silicon. In contrast, we have observed a sharp increase in the effective mass near the critical density of the MIT. Our new results suggest that the sharp increase in the previously-observed spin susceptibility is mainly due to the enhanced effective mass. Therefore, renormalization of the effective mass could play an important role in a dilute spinpolarized 2DEG. The data indicate that electron-electron interactions strongly modify the effective mass but only weakly affect the g-factor in a dilute 2DEG. Moreover, our results indicate that B c , which corresponds to the magnetic field at which the magnetoresistivity reaches saturation, vanishes at a characteristic density n χ higher than the critical density n c of the MIT. This is in contrast to the existing experimental results, and further studies are required if this discrepancy is to be understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Abrahams, P. W. Anderson, D. C. Licciardello and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

    Article  ADS  Google Scholar 

  2. G. Dolan and D. D. Oshero, Phys. Rev. Lett. 43, 72 (1978).

    Google Scholar 

  3. M. J. Uren, R. A. Davies and M. Pepper, J. Phys. C 13, L986 (1980).

    Article  Google Scholar 

  4. D. J. Bishop, D. C. Tsui and R. C. Dynes, Phys. Rev. Lett. 44, 1153 (1980).

    Article  ADS  Google Scholar 

  5. S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M. Pudalov and M. D’Iorio, Phys. Rev. B 50, 8039 (1994).

    Article  ADS  Google Scholar 

  6. D. Popovic, A. B. Fowler and S. Washburn, Phys. Rev. Lett. 79, 1543 (1997).

    Article  ADS  Google Scholar 

  7. Y. Hanein, D. Shahar, J. Yoon, C. C. Li, D. C. Tsui and H. Shtrikman, Phys. Rev. B 58, R13338 (1998).

    Article  ADS  Google Scholar 

  8. M. P. Lilly, J. L. Reno, J. A. Simmons, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, K. W. West, E. H. Hwang and S. Das Sarma, Phys. Rev. Lett. 90, 056806 (2003).

    Article  ADS  Google Scholar 

  9. S. Das Sarma M. P. Lilly, E. H. Hwang, L. N. Pfeiffer, K. W. West and J. L. Reno, Phys. Rev. Lett. 94, 136401 (2005).

    Article  ADS  Google Scholar 

  10. A. P. Mills, Jr., A. P. Ramirez, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 83, 2805 (1999).

    Article  ADS  Google Scholar 

  11. M. J. Manfra, E. H. Hwang, S. Das Sarma, L. N. Pfeiffer, K. W. West and A. M. Sergent, Phys. Rev. Lett. 99, 236402 (2007).

    Article  ADS  Google Scholar 

  12. K. Lai, W. Pan, D. C. Tsui, S. Lyon, M. Muhlberger, F. Schaffler, Phys. Rev. B. 75, 033314 (2007).

    ADS  Google Scholar 

  13. D. Simonian, S. V. Kravchenko and M. P. Sarachik, Condmat/9704071.

  14. V. M. Pudalov, G. Brunthaler, A. Prinz and G. Bauer, Cond-mat/9707054.

  15. E. Tutuc, E. P. De Poortere, S. J. Papadakis and M. Shayegan, Phys. Rev. Lett. 86, 2858 (2001).

    Article  ADS  Google Scholar 

  16. A. Prinz, V. M. Pudalov, G. Brunthaler, G. Bauer doi:10.1006/spmi.2000.0831 Superlattices and Microstructures 27, 301 (2000).

    Article  ADS  Google Scholar 

  17. A. A. Shashkin, Maryam Rahimi, S. Anissimova, S. V. Kravchenko, V.T Dolgopolov, T. M. Klapwijk, J. Magn. and Magn. Mater. 272–276, 127 (2004).

    Article  Google Scholar 

  18. V. M. Pudalov, G. Brunthaler, A. Prinz and G. Bauer, cond-mat/9801077.

  19. S. A. Vitkalov, H. Zheng, K. M. Mertes, M. P. Sarachik and T. M. Klapwijk, Phys. Rev. Lett. 85, 2164 (2000).

    Article  ADS  Google Scholar 

  20. T. Okamoto, K. Hosoya, S. Kawaji and A. Yagi, Phys. Rev. Lett. 82, 3875 (1999).

    Article  ADS  Google Scholar 

  21. D. Simonian, S. V. Kravchenko, M. P. Sarachik and V. M. Pudalov, Phys. Rev. Lett. 79, 2304 (1997).

    Article  ADS  Google Scholar 

  22. V. T. Dolgopolov and A. Gold, JETP Lett. 71, 27 (2000).

    Article  ADS  Google Scholar 

  23. S. V. Kravchenko, A. A. Shashkin and V. T. Dolgopolov, Phys. Rev. Lett. 89, 219701 (2002).

    Article  ADS  Google Scholar 

  24. V. M. Pudalov, M. E. Gershenson, H. Kojima, N. Butch, E. M. Dizhur, G. Brunthaler, A. Prinz and G. Bauer, Phys. Rev. Lett. 88, 196404 (2002).

    Article  ADS  Google Scholar 

  25. G. Zala, B. N. Narozhny and I. L. Aleiner, Phys. Rev. B 64, 214 204 (2001).

    Article  Google Scholar 

  26. I. L. Aleiner, private communication.

  27. V. M. Pudalov, A. Punno Brunthaler, A. Prinz and G. Bauer, cond-mat/0104347.

  28. T. Ando, A. B. Fowler and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  29. G. H. Chen and M. E. Raikh, Phys. Rev. B 60, 4826 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lhoussine Limouny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limouny, L., El Kaaouachi, A. & Liang, CT. Effective mass and Landé g-factor in Si-MOSFETs near the critical density. Journal of the Korean Physical Society 64, 424–428 (2014). https://doi.org/10.3938/jkps.64.424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.424

Keywords

Navigation