Skip to main content
Log in

Experimental study of the runaway current in the J-TEXT Tokamak

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Major plasma disruptions in tokamaks often generate runaway currents, which contain electrons with energies of several tens of megaelectron-volts (MeV). These currents can cause substantial damage when control is lost and the current hits the limiters or the vessel wall. The interaction between the runaway electrons and the impurities inside the plasma results in soft X-ray emission, which can provide detailed information about the runaway generation process and the confinement of runaway electrons. A vertical soft X-ray array at the top of Joint Texas Experimental Tokamak (J-TEXT) was used to study the runaway beams resulting from major disruptions. Runaway electron production and confinement of runaway current were observed by using soft X-ray images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Jaspers, K. H. Finken, G. Mank, F. Hoenen, J. A. Boedo, N. J. L. Cardozo and F. C. Schulle, Nucl. Fusion 33, 1775 (1993).

    Article  ADS  Google Scholar 

  2. V. Riccardo and JET EFDA contributors, Plasma Phys. Control. Fusion 45, A269 (2003).

    Article  ADS  Google Scholar 

  3. G. Pautasso, C. J. Fuchs, O. Gruber, C. F. Maggi, M. Maraschek, T. Pütterich, V. Rohde, C. Wittmann, E. Wolfrum, P. Cierpka, M. Beck and the ASDEX Upgrade Team, Nucl. Fusion 47, 900 (2007).

    Article  ADS  Google Scholar 

  4. M. Lehnen, S. A. Bozhenkov, S. S. Abdullaev and (TEXTOR Team), Phys. Rev. Lett 100, 255003 (2008).

    Article  ADS  Google Scholar 

  5. E. M. Hollmann, M. E. Austin, J. A. Boedo, N. H. Brooks, N. Commaux, N.W. Eidietis, D. A. Humphreys, V. A. Izzo, A. N. James, T. C. Jernigan, A. Loarte, J. Martin-Solis, R. A. Moyer, J. M. Munoz-Burgos, P. B. Parks, D. L. Rudakov, E. J. Strait, C. Tsui, M. A. Van Zeeland, J. C. Wesley and J. H. Yu, Nucl. Fusion 53, 083004 (2013).

    Article  ADS  Google Scholar 

  6. Z. Y. Chen, B. N. Wan, Y. J. Shi, H. D. Xu, H. J. Ju, J. X. Zhu, M. Li, W. D. Cai and H. F. Liang, Phys. Scr 80, 055503 (2009).

    Article  ADS  Google Scholar 

  7. M. Bakhtiari, H. Tamai, Y. Kawano, G. J. Kramer, A. Isayama, T. Nakano, Y. Kamiya, R. Yoshino, Y. Miura, Y. Kusama and Y. Nishida, Nucl. Fusion 45, 318 (2005).

    Article  ADS  Google Scholar 

  8. R. Yoshino, S. Tokuda and Y. Kawano, Nucl. Fusion 39, 151 (1999).

    Article  ADS  Google Scholar 

  9. B. Esposito, J. R. Martń-Solś, F. M. Poli, J. A. Mier, R. Sánchez and L. Panaccione, Phys. Plasmas 10, 2350 (2003).

    Article  ADS  Google Scholar 

  10. R. D. Gill, B. Alper, A. W. Edwards, L. C. Ingesson, M. F. Johnson and D. J. Ward, Nucl. Fusion 40, 163 (2000).

    Article  ADS  Google Scholar 

  11. V. V. Plyusnin, V. Riccardo, R. Jaspers, B. Alper, V. G. Kiptily, J. Mlynar, S. Popovichev, E. de La Luna, F. Andersson and JET EFDA contributors, Nucl. Fusion 46, 277 (2006).

    Article  ADS  Google Scholar 

  12. R. D. Gill, B. Alper, M. de Baar, T. C. Hender, M. F. Johnson, V. Riccardo and contributors to the EFDAJET Workprogramme, Nucl. Fusion 42, 1039 (2002).

    Article  ADS  Google Scholar 

  13. G. Zhuang, Y. Pan, X. W. Hu, Z. J. Wang, Y. H. Ding, M. Zhang, L. Gao, X. Q. Zhang, Z. J. Yang, K. X. Yu, K. W. Gentle, H. Huang and the J-TEXT Team, Nucl. Fusion 51, 094020 (2011).

    Article  ADS  Google Scholar 

  14. Y. H. Ding, G. Zhuang, X. Q. Zhang, J. Zhang, W. G. Ba, Z. J. Wang and Y. Pana, Nucl. Instrum. Meth. Phys. Res A 606, 743 (2009).

    Article  ADS  Google Scholar 

  15. Z. Y. Chen, Y. Zhang, X. Q. Zhang, Y. H. Luo, W. Jin, J. C. Li, Z. P. Chen, Z. J. Wang, Z. J. Yang and G. Zhuang, Rev. Sci. Instrum 83, 056108 (2012).

    Article  ADS  Google Scholar 

  16. T. C. Hender et al., Nucl. Fusion 47, S128 (2007).

    Article  ADS  Google Scholar 

  17. H. M. Smith and E. Verwichte, Phys. Plasmas 15, 072502 (2008).

    Article  ADS  Google Scholar 

  18. Z. Y. Chen, Z. P. Chen, Y. Zhang, W. Jin, D. Fang, W. G. Ba, Z. J. Wang, M. Zhang, Z. J. Yang, Y. H. Ding, G. Zhuang and J-TEXT Team, Phys. Lett. A 376, 1937 (2012).

    Article  ADS  Google Scholar 

  19. J. A. Wesson et al., Nucl. Fusion 29, 641 (1989).

    Article  ADS  Google Scholar 

  20. N. W. Eidietis, N. Commaux, E. M. Hollmann, D. A. Humphreys, T. C. Jernigan, R. A. Moyer, E. J. Strait, M. A. VanZeeland, J. C. Wesley and J. H. Yu, Phys.Plasmas 19, 056109 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Y. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y.H., Chen, Z.Y., Zhang, X.Q. et al. Experimental study of the runaway current in the J-TEXT Tokamak. Journal of the Korean Physical Society 64, 405–409 (2014). https://doi.org/10.3938/jkps.64.405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.405

Keywords

Navigation