Journal of the Korean Physical Society

, Volume 64, Issue 2, pp 313–321

Differentiation of solid pancreatic tumors by using dynamic contrast-enhanced MRI



Distinguishing among different solid pancreatic tumor types, pancreatic ductal adenocarcinomas, neuroendocrine tumors (NETs), and solid pseudopapillary tumors (SPTs) is important, as the treatment options are vastly different. This study compared characteristics of solid pancreatic tumors by using dynamic contrast enhanced magnetic resonance imaging (MRI). Fifty patients underwent MR imaging of pancreatic masses with a histopathology that was later confirmed as an adenocarcinoma (n = 27), a NET (n = 16), and a SPT (n = 7). For qualitative analysis, two reviewers evaluated the morphologic features of the tumors: locations, margins, shapes, contained products, pancreatic ductal dilatation, and grade of signal intensity (SI). For the quantitative analysis, all phases of the MR images were co-registered using proprietary image registration software; thus, a region of interest (ROI) defined on one phase could be re-applied in other phases. The following four ratios were considered: tumor-to-uninvolved pancreas SI ratio, percent SI change, tumor-touninvolved pancreas enhancement index, and arterial-to-delayed washout rate. The areas under the receiver operating characteristic (ROC) curves were assessed for the four ratios. Adenocarcinomas had ill-defined margins, irregular shapes, and ductal dilatation compared with NETs and SPTs (P < 0.001). The tumor-to-uninvolved pancreas ratio on all dynamic phases was significantly higher for NETs than for both adenocarcinomas and SPTs (P < 0.05). Percentage SI changes of pancreatic tumors on the pancreatic and the portal venous phases were significantly higher for NETs than for both adenocarcinomas and SPTs (P < 0.05). A significant difference between NETs and adenocarcinomas was also found with respect to the tumor-to-uninvolved pancreas enhancement index and arterial-to-delayed washout rate. The percentage SI changes in the pancreatic phase and the arterial-to-delayed washout rate best distinguished between adenocarcinomas and NETs with the area under the ROC curve being 0.87. The percentage SI changes in the pancreatic and the portal venous phases best distinguished between NETs and SPTs with area under the ROC curve 0.87. In summary, contrast-enhanced MRI can be useful in differentiating solid pancreatic tumors in qualitative and quantitative analyses.


Dynamic MRI Image registration Pancreatic adenocarcinoma Neuroendocrine tumor Solid pseudopapillary tumor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Li, K. Xie, R. Wolff and J. L. Abbruzzese, Lancet 363, 1049 (2004).CrossRefGoogle Scholar
  2. [2]
    American Cancer Society, Cancer Facts & Figures 2010, (Atlanta, 2010).Google Scholar
  3. [3]
    J. Franko, W. Feng, L. Yip, E. Genovese and A. J. Moser, J. of Gastrointestinal Surg. 14, 541 (2010).CrossRefGoogle Scholar
  4. [4]
    A. A. Gumbs, P. S. Moore, M. Falconi, C. Bassi, S. Beghelli, I. Modlin and A. Scarpa. J. of Surgical Oncol. 81, 45 (2002).CrossRefGoogle Scholar
  5. [5]
    K. Oberg and B. Eriksson, Clin. Gastroenterology 19, 753 (2005).Google Scholar
  6. [6]
    I. M. Modlin et al., Lancet Oncol. 9, 61 (2008).CrossRefGoogle Scholar
  7. [7]
    K. Y. Lam, C. Y. Lo and S. T. Fan, World J. Surg. 23, 1045 (1999).CrossRefGoogle Scholar
  8. [8]
    T. Papavramidis and S. Papavramidis, J. Am. Coll. Surg. 200, 965 (2005).CrossRefGoogle Scholar
  9. [9]
    L. H. Tang, H. Aydin, M. F. Brennan and D. S. Klimstra, Am. J. Surg. Path. 29, 512 (2005).CrossRefGoogle Scholar
  10. [10]
    T. Ichikawa, M. S. Peterson, M. P. Federle, R. L. Baron, H. Haradome, Y. Kawamori, S. Nawano and T. Araki, Radiology 216, 163 (2000).CrossRefGoogle Scholar
  11. [11]
    A. J. Megibow, X. H. Zhou, H. Rotterdam, I. R. Francis, E. A. Zerhouni, D. M. Balfe, J. C. Weinreb, A. Aisen, J. Kuhlman, and J. P. Heiken, Radiology 195, 327 (1995).Google Scholar
  12. [12]
    A. D. Vellet, W. Romano, D. B. Bach, R. B. Passi, D. H. Taves, and P. L. Munk, Radiology 183, 87 (1992).Google Scholar
  13. [13]
    L. C. Lee, C. S. Grant, D. R. Salomao, J. G. Fletcher, N. Takahashi, J. L. Fidler, M. J. Levy and M. Huebner, Surgery 152, 965 (2012).CrossRefGoogle Scholar
  14. [14]
    M. H. Yu, J. Y. Lee, M. A. Kim, S. H. Kim, J. M. Lee, J. K. Han and B. I. Choi, Am. J. Roentgen. 195, 1324 (2010).CrossRefGoogle Scholar
  15. [15]
    K. M. Jang, S. H. Kim, Y. K. Kim, M. J. Park, M. H. Lee, J. Hwang and H. Rhim, Magn. Res. Imag. 30, 916 (2012).CrossRefGoogle Scholar
  16. [16]
    C. R. Meyer, J. L. Boes, B. Kim, P. H. Bland, K. R. Zasadny, P. V. Kison, K. Koral, K. A. Frey and R. L. Wahl, Med. Image Anal. 1, 195 (1997).CrossRefGoogle Scholar
  17. [17]
    F. Obuz, O. Dicle, A. Coker, O. Sagol and S. Karademir, European J. Radiol. 38, 146 (2001).CrossRefGoogle Scholar
  18. [18]
    E.S. Siegelman and E. K. Outwater, Radiol. Clinics of North America 36, 263 (1998).CrossRefGoogle Scholar
  19. [19]
    J. N. Ly and F. H. Miller, Radiologic clinics of North America 40, 1289 (2002).CrossRefGoogle Scholar
  20. [20]
    N. J. Owen, S. A. Sohaib, P. D. Peppercorn, J. P. Monson, A. B. Grossman, G. M. Besser and R. H. Reznek, British J. Radiol. 74, 968 (2001).Google Scholar
  21. [21]
    R. C. Semelka, C. M. Custodio, N. Cem Balci and J. T. Woosley, J. MRI 11, 141 (2000).Google Scholar
  22. [22]
    J. Rosai, Rosai and Ackerman’s Surgical Pathology (Mosby, Philadelphia, 1998).Google Scholar
  23. [23]
    S. Herwick, F. H. Miller and A. L. Keppk, Am. J. Roentgen. 187, W472 (2006).CrossRefGoogle Scholar
  24. [24]
    K. Y. Bilimoria, D. J. Bentrem, R. P. Merkow, J. S. Tomlinson, A. K. Stewart, C. Y. Ko, and M. S. Talamonti, J. Am. Coll. Surg. 205, 558 (2007).CrossRefGoogle Scholar
  25. [25]
    G. Benassai, M. Mastrorilli, G. Quarto, A. Cappiello, U. Giani, P. Forestieri and F. Mazzeo, J. Surg. Oncol. 73, 213 (2000).CrossRefGoogle Scholar
  26. [26]
    V. H. Gaidhane, Y. V. Hote and V. Singh, Biomed. Engin. Lett. 2, 118 (2012).CrossRefGoogle Scholar
  27. [27]
    S. Kwon, D. Kim, B. Han and K. Kwon, Biomed. Engin. Lett. 2, 207 (2012).CrossRefGoogle Scholar
  28. [28]
    K. N. Kim, H. Joeng, P. Heo, Y. B. Kim and Z. Cho, Biomed. Engin. Lett. 2, 223 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2014

Authors and Affiliations

  • Seung Joon Choi
    • 1
  • Hyung Sik Kim
    • 1
  • Hyunjin Park
    • 2
  1. 1.Department of RadiologyGachon Univeristy Gil HospitalIncheonKorea
  2. 2.School of Electronic and Electrical EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations