Field-line resonances in a time-varying magnetosphere

Abstract

Field line resonances, which represent shear Alfven standing modes of magnetohydrodynamic (MHD) waves are studied in space for the case in which magnetosphere is being perturbed in time by solarwind variations. A linearizedMHD wave model has been developed with time-varying Alfven speeds. When the magnetosphere becomes quiet, field line resonances consistently occur over many harmonics. A time-varying Alfven speed is found to cause a significant broadening of each spectral peak, which strongly depends on the frequency. While fundamental mode or lower harmonics become relatively stable with less broadening, higher harmonics appear with strong dispersion. Our results are consistent with the observed feature that fundamental or lower harmonic modes are dominant and higher harmonics are less frequently excited in space where the system is often perturbed in time.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    L. Chen and A. Hasegawa, J. Geophys. Res. 79, 1024 (1974).

    ADS  Article  Google Scholar 

  2. [2]

    A. Hasegawa and L. Chen, Phys. Res. Lett. 32, 454 (1974).

    ADS  Article  Google Scholar 

  3. [3]

    D. J. Southwood, Planet. Space Sci. 22, 483 (1974).

    ADS  Article  Google Scholar 

  4. [4]

    K. Takahashi and R. L. McPherron, J. Geophys. Res. 87, 1504 (1982).

    ADS  Article  Google Scholar 

  5. [5]

    M. G. Kivelson and D. J. Southwood, J. Geophys. Res. 91, 4345 (1986).

    ADS  Article  Google Scholar 

  6. [6]

    W. Allan, S. P. White and E. M. Poulter, Planet. Space Sci. 34, 371 (1986).

    ADS  Article  Google Scholar 

  7. [7]

    L. Chen and S. C. Cowley, Geophys. Res. Lett. 16, 895 (1989).

    ADS  Article  Google Scholar 

  8. [8]

    D. H. Lee and R. L. Lysak, J. Geophys. Res. 94, 17097 (1989).

    ADS  Article  Google Scholar 

  9. [9]

    K. Takahashi, Rev. Geophys. 29, 1066 (1991).

    ADS  Google Scholar 

  10. [10]

    A. S. Leonovich and V. A. Mazur, Planet. Space Sci. 41, 697 (1993).

    ADS  Article  Google Scholar 

  11. [11]

    D. H. Lee, J. Geophys. Res. 101, 15371 (1996).

    ADS  Article  Google Scholar 

  12. [12]

    I. R. Mann, A. N. Wright, K. J. Mills and V. M. Nakariakov, J. Geophys. Res. 104, 333 (1999).

    ADS  Article  Google Scholar 

  13. [13]

    K. H. Glassmeier, D. Klimushkin, C. Othmer and P. Mager, Adv. Space Res. 33, 1875 (2004).

    ADS  Article  Google Scholar 

  14. [14]

    V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas(Pergamon, New York, 1970).

    Google Scholar 

  15. [15]

    G. Budden, The Propagation of Radio Waves (Cambridge UniversityPress, Cambridge, 1985).

    Google Scholar 

  16. [16]

    D. G. Swanson, Theory of Mode Conversion and Tunneling in InhomogeneousPlasmas (Wiley, New York, 1998).

    Google Scholar 

  17. [17]

    D. W. Forslund, J. M. Kindel, K. Lee, E. L. Lindman and R. L. Morse, Phys. Rev. A 11, 679 (1975).

    ADS  Article  Google Scholar 

  18. [18]

    D. E. Hinkel-Lipsker, B. D. Fried and G. J. Morales, Phys. Rev. Lett. 66, 1862 (1991).

    ADS  Article  Google Scholar 

  19. [19]

    D. E. Hinkel-Lipsker, B. D. Fried and G. J. Morales, Phys. Fluids B 4, 559 (1992).

    ADS  Article  Google Scholar 

  20. [20]

    R. Rammal and B. Doucot, J. Phys. (Paris) 48, 509 (1987).

    Article  Google Scholar 

  21. [21]

    V. I. Klyatskin, Prog. Opt. 33, 1 (1994).

    Article  MathSciNet  Google Scholar 

  22. [22]

    V. I. Klyatskin, N. V. Gryanik and D. Gurarie, Wave motion 28, 333 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  23. [23]

    K. Kim, H. Lim and D. H. Lee, J. Korean Phys. Soc. 39, L956 (2001).

    ADS  Google Scholar 

  24. [24]

    K. Kim, D. H. Lee and H. Lim, Europhys. Lett. 69, 207 (2005).

    ADS  Article  Google Scholar 

  25. [25]

    D. H. Lee, J. R. Johnson, K. Kim, K. S. Kim, J. Geophys. Res. 113, A11212 (2008).

    ADS  Article  Google Scholar 

  26. [26]

    L. G. Ozeke and I. R. Mann, J. Geophys. Res. 109, A05205 (2004).

    ADS  Google Scholar 

  27. [27]

    R. S. Newton, D. J. Southwood and W. J. Hughes, Planet. Space Sci. 26, 201 (1978).

    ADS  Article  Google Scholar 

  28. [28]

    W. Allan and F. B. Knox, Planet. Space Sci. 27, 939 (1979).

    ADS  Article  Google Scholar 

  29. [29]

    P. Ellis and D. J. Southwood, Planet. Space Sci. 31, 107 (1983).

    ADS  Article  Google Scholar 

  30. [30]

    F. Budnik, M. Stellmacher, K.-H. Glassmeier and S. C. Buchert, Ann. Geophys. 16, 140 (1998).

    ADS  Article  Google Scholar 

  31. [31]

    D. H. Lee and R. L. Lysak, J. Geophys. Res. A 104, 28691 (1999).

    ADS  Article  Google Scholar 

  32. [32]

    D. H. Lee, K. H. Kim, R. E. Denton and K. Takahashi, Earth Planets Space 56, e33 (2004).

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Seon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, D.H., Kim, K.H., Lee, E.S. et al. Field-line resonances in a time-varying magnetosphere. Journal of the Korean Physical Society 64, 249–253 (2014). https://doi.org/10.3938/jkps.64.249

Download citation

Keywords

  • Magnetosphere
  • MHD waves
  • ULF waves