Journal of the Korean Physical Society

, Volume 64, Issue 2, pp 249–253 | Cite as

Field-line resonances in a time-varying magnetosphere

  • D. H. Lee
  • K. H. Kim
  • E. S. Lee
  • H. Jin
  • J. Seon
Article

Abstract

Field line resonances, which represent shear Alfven standing modes of magnetohydrodynamic (MHD) waves are studied in space for the case in which magnetosphere is being perturbed in time by solarwind variations. A linearizedMHD wave model has been developed with time-varying Alfven speeds. When the magnetosphere becomes quiet, field line resonances consistently occur over many harmonics. A time-varying Alfven speed is found to cause a significant broadening of each spectral peak, which strongly depends on the frequency. While fundamental mode or lower harmonics become relatively stable with less broadening, higher harmonics appear with strong dispersion. Our results are consistent with the observed feature that fundamental or lower harmonic modes are dominant and higher harmonics are less frequently excited in space where the system is often perturbed in time.

Keywords

Magnetosphere MHD waves ULF waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Chen and A. Hasegawa, J. Geophys. Res. 79, 1024 (1974).ADSCrossRefGoogle Scholar
  2. [2]
    A. Hasegawa and L. Chen, Phys. Res. Lett. 32, 454 (1974).ADSCrossRefGoogle Scholar
  3. [3]
    D. J. Southwood, Planet. Space Sci. 22, 483 (1974).ADSCrossRefGoogle Scholar
  4. [4]
    K. Takahashi and R. L. McPherron, J. Geophys. Res. 87, 1504 (1982).ADSCrossRefGoogle Scholar
  5. [5]
    M. G. Kivelson and D. J. Southwood, J. Geophys. Res. 91, 4345 (1986).ADSCrossRefGoogle Scholar
  6. [6]
    W. Allan, S. P. White and E. M. Poulter, Planet. Space Sci. 34, 371 (1986).ADSCrossRefGoogle Scholar
  7. [7]
    L. Chen and S. C. Cowley, Geophys. Res. Lett. 16, 895 (1989).ADSCrossRefGoogle Scholar
  8. [8]
    D. H. Lee and R. L. Lysak, J. Geophys. Res. 94, 17097 (1989).ADSCrossRefGoogle Scholar
  9. [9]
    K. Takahashi, Rev. Geophys. 29, 1066 (1991).ADSGoogle Scholar
  10. [10]
    A. S. Leonovich and V. A. Mazur, Planet. Space Sci. 41, 697 (1993).ADSCrossRefGoogle Scholar
  11. [11]
    D. H. Lee, J. Geophys. Res. 101, 15371 (1996).ADSCrossRefGoogle Scholar
  12. [12]
    I. R. Mann, A. N. Wright, K. J. Mills and V. M. Nakariakov, J. Geophys. Res. 104, 333 (1999).ADSCrossRefGoogle Scholar
  13. [13]
    K. H. Glassmeier, D. Klimushkin, C. Othmer and P. Mager, Adv. Space Res. 33, 1875 (2004).ADSCrossRefGoogle Scholar
  14. [14]
    V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas(Pergamon, New York, 1970).Google Scholar
  15. [15]
    G. Budden, The Propagation of Radio Waves (Cambridge UniversityPress, Cambridge, 1985).CrossRefGoogle Scholar
  16. [16]
    D. G. Swanson, Theory of Mode Conversion and Tunneling in InhomogeneousPlasmas (Wiley, New York, 1998).Google Scholar
  17. [17]
    D. W. Forslund, J. M. Kindel, K. Lee, E. L. Lindman and R. L. Morse, Phys. Rev. A 11, 679 (1975).ADSCrossRefGoogle Scholar
  18. [18]
    D. E. Hinkel-Lipsker, B. D. Fried and G. J. Morales, Phys. Rev. Lett. 66, 1862 (1991).ADSCrossRefGoogle Scholar
  19. [19]
    D. E. Hinkel-Lipsker, B. D. Fried and G. J. Morales, Phys. Fluids B 4, 559 (1992).ADSCrossRefGoogle Scholar
  20. [20]
    R. Rammal and B. Doucot, J. Phys. (Paris) 48, 509 (1987).CrossRefGoogle Scholar
  21. [21]
    V. I. Klyatskin, Prog. Opt. 33, 1 (1994).CrossRefMathSciNetGoogle Scholar
  22. [22]
    V. I. Klyatskin, N. V. Gryanik and D. Gurarie, Wave motion 28, 333 (1998).CrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    K. Kim, H. Lim and D. H. Lee, J. Korean Phys. Soc. 39, L956 (2001).ADSGoogle Scholar
  24. [24]
    K. Kim, D. H. Lee and H. Lim, Europhys. Lett. 69, 207 (2005).ADSCrossRefGoogle Scholar
  25. [25]
    D. H. Lee, J. R. Johnson, K. Kim, K. S. Kim, J. Geophys. Res. 113, A11212 (2008).ADSCrossRefGoogle Scholar
  26. [26]
    L. G. Ozeke and I. R. Mann, J. Geophys. Res. 109, A05205 (2004).ADSGoogle Scholar
  27. [27]
    R. S. Newton, D. J. Southwood and W. J. Hughes, Planet. Space Sci. 26, 201 (1978).ADSCrossRefGoogle Scholar
  28. [28]
    W. Allan and F. B. Knox, Planet. Space Sci. 27, 939 (1979).ADSCrossRefGoogle Scholar
  29. [29]
    P. Ellis and D. J. Southwood, Planet. Space Sci. 31, 107 (1983).ADSCrossRefGoogle Scholar
  30. [30]
    F. Budnik, M. Stellmacher, K.-H. Glassmeier and S. C. Buchert, Ann. Geophys. 16, 140 (1998).ADSCrossRefGoogle Scholar
  31. [31]
    D. H. Lee and R. L. Lysak, J. Geophys. Res. A 104, 28691 (1999).ADSCrossRefGoogle Scholar
  32. [32]
    D. H. Lee, K. H. Kim, R. E. Denton and K. Takahashi, Earth Planets Space 56, e33 (2004).ADSGoogle Scholar

Copyright information

© The Korean Physical Society 2014

Authors and Affiliations

  • D. H. Lee
    • 1
  • K. H. Kim
    • 1
  • E. S. Lee
    • 1
  • H. Jin
    • 1
  • J. Seon
    • 1
  1. 1.School of Space ResearchKyung Hee UniversityYonginKorea

Personalised recommendations