Skip to main content
Log in

Geometrical and hydrodynamic aspects of five-dimensional Schwarzschild black hole

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Exploiting the five-dimensional Schwarzschild black hole, we study the geometrical natures of higher-dimensional black holes to yield the (6+1)-dimensional global embedding Minkowski space structure. We next obtain the Hawking temperature and entropy on this five-dimensional manifold, and the results are different from the four-dimensional ones. On the contrary, the radial component of the Einstein equation for the massive particles or photons on the five-dimensional spacetime is shown to have the same form as that for the four-dimensional black hole one. Moreover, we construct an effective potential on the equatorial plane of the restricted three-brane to investigate the behavior of the particles or photons on this restricted brane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory (Cambridge University Press, Cambridge, England, 1987).

    MATH  Google Scholar 

  2. J. Polchinski, String Theory (Cambridge University Press, Cambridge, England, 1999).

    Google Scholar 

  3. E. Witten, Phys. Rev. D 44, 314 (1991).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. M. Bañados, C. Teitelboim and J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. C. Martinez, C. Teitelboim and J. Zanelli, Phys. Rev. D 61, 104013 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Phys. Rev. D 48, 1506 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Carlip, Class. Quant. Grav. 12, 2853 (1995).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. D. Cangemi, M. Leblanc and R. B. Mann, Phys. Rev. D 48, 3606 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Maldacena and A. Strominger, JHEP 9812, 005 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  10. K. Sfetsos and K. Skenderis, Nucl. Phys. B 517, 179 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. S. Carlip, Phys. Rev. D 51, 632 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Carlip, Phys. Rev. D 55, 878 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  13. R. B. Mann and S. N. Solodukhin, Phys. Rev. D 55, 3622 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. J. M. Medved and G. Kunstatter, Phys. Rev. D 63, 104005 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Buric, M. Dimitrijevic and V. Radovanovic, Phys. Rev. D 65, 064022 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  16. G. T. Horowitz and D. L. Welch, Phys. Rev. Lett. 71, 328 (1993).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. J. H. Horne, G. T. Horowitz and A. R. Steif, Phys. Rev. Lett. 68, 568 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. C. G. Callan, D. Friedan, E. J. Martinec and M. J. Perry, Nucl. Phys. B 262, 593 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  19. S. W. Hawking, Comm. Math. Phys. 42, 199 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  20. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  21. W. G. Unruh, Phys. Rev. D 14, 870 (1976).

    Article  ADS  Google Scholar 

  22. S. T. Hong, Y. W. Kim and Y. J. Park, Phys. Rev. D 62, 024024 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  23. S. T. Hong, W. T. Kim, Y. W. Kim and Y. J. Park, Phys. Rev. D 62, 064021 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  24. S. T. Hong, W. T. Kim, J. J. Oh and Y. J. Park, Phys. Rev. D 63, 127502 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  25. N. L. Santos, O. J. C. Dias and J. P. S. Lemos, Phys. Rev. D 70, 124033 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  26. R. Banerjee and B. R. Majhi, Phys. Lett. B 690, 83 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  27. S. W. Hawking and R. Penrose, Proc. Roy. Soc. Lond. A 314, 529 (1970).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Y. S. Cho and S. T. Hong, Phys. Rev. D 75, 127902 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  29. Y. S. Cho and S. T. Hong, Phys. Rev. D 78, 067301 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  30. Y. S. Cho and S. T. Hong, Phys. Rev. D 83, 104040 (2011).

    Article  ADS  Google Scholar 

  31. S. T. Hong, J. Lee, T. H. Lee and P. Oh, Phys. Rev. D 78, 047503 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  32. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 125, 139 (1983).

    Article  ADS  Google Scholar 

  35. M. Ito, Phys. Lett. B 524, 357 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. M. Ito, Phys. Rev. D 64, 124021 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  37. S. T. Hong, arXiv:1209.5974.

  38. F. R. Tangherlini, Nuovo Cimento 27, 636 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  39. R. Emparan and H. S. Reall, Living Rev. Relativity 11, 6 (2008).

    Article  ADS  Google Scholar 

  40. E. Kasner, Am. J. Math. 43, 130 (1921).

    Article  MATH  MathSciNet  Google Scholar 

  41. C. Fronsdal, Phys. Rev. 116, 778 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  42. H. F. Goenner, General Relativity and Gravitation, edited by A. Held (Plenum, New York, 1980).

  43. J. Rosen, Rev. Mod. Phys. 37, 204 (1965).

    Article  ADS  MATH  Google Scholar 

  44. M. Beciu and H. Culetu, Mod. Phys. Lett. A 14, 1 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  45. P. F. Gonzalez-Diaz, Phys. Rev. D 61, 024019 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  46. L. Andrianopoli, M. Derix, G.W. Gibbons, C. Herdeiro, A. Santambrogio and A. V. Proeyen, Class. Quant. Grav. 17, 1875 (2000).

    Article  ADS  MATH  Google Scholar 

  47. S. Deser and O. Levin, Class. Quant. Grav. 14, L163, (1997).

    Article  ADS  MathSciNet  Google Scholar 

  48. S. Deser and O. Levin, Class. Quant. Grav. 15, L85 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  49. S. Deser and O. Levin, Phys. Rev. D 59, 064004 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  50. K. Schwarzschild, Sitzber. Deut. Akad. Wiss. Berlin, KI. Math. Phys. Tech. (1916), p. 189.

    Google Scholar 

  51. M. Spivak, Differential Geometry, Vol 5 (Publish or Perish, Berkeley, 1975), Chapter 11.

    Google Scholar 

  52. R.M. Wald, General Relativity (University of Chicago Press, Chicago, 1984)

    Book  MATH  Google Scholar 

  53. S. L. Shapiro, Astrophys. J. 180, 531 (1973).

    Article  ADS  Google Scholar 

  54. S. T. Hong, arXiv:1209.4563.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Tae Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, ST. Geometrical and hydrodynamic aspects of five-dimensional Schwarzschild black hole. Journal of the Korean Physical Society 64, 1928–1934 (2014). https://doi.org/10.3938/jkps.64.1928

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.1928

Keywords

Navigation