Skip to main content
Log in

A new horizon for hexagonal boron nitride film

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Growth of hexagonal boron nitride (hBN), an isomorph of graphene/graphite, has been highlighted due to its highly insulating and transparent properties, in parallel with highly-conducting graphene counterpart, which could be useful for numerous applications. Nevertheless, difficulty arises from the absence of robust synthesis methods that provide large-area and high-quality hBN with controlled number of layers. In this article, we review the recent development for the synthesis of hBN with various approaches including liquid-metal, ultra-high-vacuum chemical vapor deposition (UHVCVD), and low-pressure CVD (LPCVD) methods. Its fundamental physical and chemical properties and its potential applications are further discussed. We expect that our comprehensive overview of the synthesis method of hBN will provide a route to find an ultimate method of synthesizing large-area and high-quality hBN with controlled number of layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Pease, Nature 165, 722 (1950).

    Article  ADS  Google Scholar 

  2. K. Watanabe, T. Taniguchi and H. Kanda, Nat. Mater. 3, 404 (2004).

    Article  ADS  Google Scholar 

  3. A. Lipp, K. A. Schwetz and K. Hunold, J. of Eur. Ceram. Soc. 5, 3 (1989).

    Article  Google Scholar 

  4. J. G. Kho, K. T. Moon, J. H. Kim and D. P. Kim, J. Am. Ceram. Soc. 83, 2681 (2000).

    Article  Google Scholar 

  5. Y. Chen, J. Zou, S. J. Campbell and G. Le Caer, Appl. Phy. Lett. 84, 2430 (2004).

    Article  ADS  Google Scholar 

  6. R. T. Paine and C. K. Narula, Chem. Rev. 90, 73 (1990).

    Article  Google Scholar 

  7. J. S. Bunch, S. S. Verbridge, J. S. Alden, A.M. van der Zande, J. M. Parpia, H. G. Craighead and P. L. McEuen, Nano Lett. 8, 2458 (2008).

    Article  ADS  Google Scholar 

  8. C. R. Dean et al., Nature Nanotech. 5, 722 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  9. I. Meric, C. R. Dean, N. Petrone, L. Wang, J. Hone, P. Kim and K. L. Shepard, Proc. IEEE 101, 1609 (2013).

    Article  Google Scholar 

  10. Y. Kubota, K. Watanabe, O. Tsuda and T. Taniguchi, Science 317, 932 (2007).

    Article  ADS  Google Scholar 

  11. M. S. Dresselhaus and G. Dresselhaus, Adv. Phy. 51, 1 (2002).

    Article  ADS  Google Scholar 

  12. Y.-H. Kim, K. J. Chang and S. G. Louie, Phys. Rev. B 63, 205408 (2001).

    Article  ADS  Google Scholar 

  13. I. Jo, M. T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao and L. Shi, Nano Lett. 13, 550 (2013).

    Article  ADS  Google Scholar 

  14. H. O. Pierson, J. Compos. Mater. 9, 228 (1975).

    Article  ADS  Google Scholar 

  15. A. A. Balandin, Nat. Mater. 10, 569 (2011).

    Article  ADS  Google Scholar 

  16. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Nano Lett. 8, 902 (2008).

    Article  ADS  Google Scholar 

  17. M. I. Petrescu, Diamond and Relat. Mater. 13, 1848 (2004).

    Article  ADS  Google Scholar 

  18. C. Lee, X. Wei, J. W. Kysar and J. Hone, Science 321, 385 (2008).

    Article  ADS  Google Scholar 

  19. W. C. Morgan, Carbon 10, 73 (1972).

    Article  Google Scholar 

  20. W. Paszkowicz, J. B. Pelka, M. Knapp, T. Szyszko and S. Podsiadlo, Appl. Phys. Mater. Sci. Process. 75, 431 (2002).

    Article  ADS  Google Scholar 

  21. T. Sugino and T. Tai, Jpn. J. Appl. Phys. Part 2-Lett. 39, L1101 (2000).

    Article  Google Scholar 

  22. G.-H. Lee, Y.-J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim and J. Hone, Appl. Phys. Lett. 99, (2011).

  23. M. Engler, C. Lesniak, R. Damasch, B. Ruisinger and J. Eichler, Cfi-Ceramic Forum International 84, E49 (2007).

    Google Scholar 

  24. R. Haubner, M. Wilhelm, R. Weissenbacher and B. Lux, “Boron nitrides- properties, synthesis and applications”, in High Performance Non-oxide Ceramics II vol. 102, Springer-Verlag Berlin, 2002, p. 1.

    Article  Google Scholar 

  25. G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M. S. Choi, D.-Y. Lee, C. Lee, W. J. Yoo, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim and J. Hone, ACS NANO 7, 7931 (2013).

    Article  Google Scholar 

  26. K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios and J. Kong, Nano Lett. 12, 161 (2012).

    Article  ADS  Google Scholar 

  27. H. Wang, T. Taychatanapat, A. Hsu, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero and T. Palacios, IEEE Electron Dev. Lett. 32, 1209 (2011).

    Article  ADS  Google Scholar 

  28. M. S. Bresnehan, M. J. Hollander, M. Wetherington, M. LaBella, K. A. Trumbull, R. Cavalero, D. W. Snyder and J. A. Robinson, ACS NANO 6, 5234 (2012).

    Article  Google Scholar 

  29. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov and L. A. Ponomarenko, Science (New York, N.Y.) 335, 947 (2012).

    Article  ADS  Google Scholar 

  30. S. M. Kim, A. Hsu, P. T. Araujo, Y. H. Lee, T. Palacios, M. Dresselhaus, J. C. Idrobo, K. K. Kim and J. Kong, Nano Lett. 13, 933 (2013).

    Article  ADS  Google Scholar 

  31. L. Ci, L. Song, C. H. Jin, D. Jariwala, D. X. Wu, Y. J. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu and P. M. Ajayan, Nat. Mater. 9, 430 (2010).

    Article  ADS  Google Scholar 

  32. Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K. P. Hackenberg, A. Babakhani, J.-C. Idrobo, R. Vajtai, J. Lou and P. M. Ajayan, Nat. Nanotech. 8, 119 (2013).

    Article  ADS  Google Scholar 

  33. M. P. Levendorf, C. J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller and J. Park, Nature 488, 627 (2012).

    Article  ADS  Google Scholar 

  34. Y. Lin and J. W. Connell, Nanoscale 4, 6908 (2012).

    Article  ADS  Google Scholar 

  35. T. Taniguchi and K. Watanabe, J. Cryst. Growth 303, 525 (2007).

    Article  ADS  Google Scholar 

  36. K. Watanabe, T. Taniguchi and H. Kanda, Phys. Status Solidi A 201, 2561 (2004).

    Article  ADS  Google Scholar 

  37. K. Watanabe and T. Taniguchi, Int. J. Appl. Ceram. Tec. 8, 977 (2011).

    Article  Google Scholar 

  38. B. Clubine, Thesis “Synthesis and characterization of bulk single crystal hexagonal boron nitride from metal solvents”, Kansas State University, (2012).

    Google Scholar 

  39. K. M. Burson, W. G. Cullen, S. Adam, C. R. Dean, K. Watanabe, T. Taniguchi, P. Kim and M. S. Fuhrer, Nano Lett. 13, 3576 (2013).

    Article  ADS  Google Scholar 

  40. C. R. Dean et al., Nature 497, 598 (2013).

    Article  ADS  Google Scholar 

  41. P. Maher, C. R. Dean, A. F. Young, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone and P. Kim, Nat. Phys. 9, 154 (2013).

    Article  Google Scholar 

  42. C. Dean, A. F. Young, L. Wang, I. Meric, G. H. Lee, K. Watanabe, T. Taniguchi, K. Shepard, P. Kim and J. Hone, Solid State Commun. 152, 1275 (2012).

    Article  ADS  Google Scholar 

  43. W. Auwarter, T. J. Kreutz, T. Greber and J. Osterwalder, Surf. Sci. 429, 229 (1999).

    Article  ADS  Google Scholar 

  44. W. Auwarter, M. Muntwiler, J. Osterwalder and T. Greber, Surf. Sci. 545, L735 (2003).

    Article  ADS  Google Scholar 

  45. W. Auwarter, H. U. Suter, H. Sachdev and T. Greber, Chem. Mat. 16, 343 (2004).

    Article  Google Scholar 

  46. A. B. Preobrajenski, A. S. Vinogradov and N. Martensson, Surf. Sci. 582, 21 (2005).

    Article  ADS  Google Scholar 

  47. A. Nagashima, N. Tejima, Y. Gamou, T. Kawai and C. Oshima, Phys. Rev. B 51, 4606 (1995).

    Article  ADS  Google Scholar 

  48. M. Morscher, M. Corso, T. Greber and J. Osterwalder, Surf. Sci. 600, 3280 (2006).

    Article  ADS  Google Scholar 

  49. M. T. Paffett, R. J. Simonson, P. Papin and R. T. Paine, Surf. Sci. 232, 286 (1990).

    Article  ADS  Google Scholar 

  50. A. B. Preobrajenski, A. S. Vinogradov, M. L. Ng, E. Cavar, R. Westerstrom, A. Mikkelsen, E. Lundgren and N. Martensson, Phys. Rev. B 75, 245412 (2007).

    Article  ADS  Google Scholar 

  51. A. Goriachko, Y. B. He, M. Knapp, H. Over, M. Corso, T. Brugger, S. Berner, J. Osterwalder and T. Greber, Langmuir 23, 2928 (2007).

    Article  Google Scholar 

  52. M. Corso, W. Auwarter, M. Muntwiler, A. Tamai, T. Greber and J. Osterwalder, Science 303, 217 (2004).

    Article  ADS  Google Scholar 

  53. F. Mueller, S. Huefner, H. Sachdev, R. Laskowski, P. Blaha and K. Schwarz, Phys. Rev. B 82, 113406 (2010).

    Article  ADS  Google Scholar 

  54. M. Yokoyama, Y. Matsukura and H. Tanaka, J. Cryst. Growth 203, 464 (1999).

    Article  ADS  Google Scholar 

  55. A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, Jpn. J. Appl. Phys. 236, L899 (1997).

    Article  Google Scholar 

  56. R. Laskowski, P. Blaha and K. Schwarz, Phys. Rev. B 78, 045409 (2008).

    Article  ADS  Google Scholar 

  57. Y. Liu, S. Bhowmick and B. I. Yakobson, Nano Lett. 11, 3113 (2011).

    Article  Google Scholar 

  58. J. G. Diaz, Y. Ding, R. Koitz, A. P. Seitsonen, M. Iannuzzi and J. Hutter, Theor. Chem. Acc. 132, (2013).

  59. S. Berner et al., Angew. Chem. Int. Ed. 46, 5115 (2007).

    Article  Google Scholar 

  60. L. Song et al., Nano Lett. 10, 3209 (2010).

    Article  ADS  Google Scholar 

  61. Y. M. Shi et al., Nano Lett. 10, 4134 (2010).

    Article  ADS  Google Scholar 

  62. K. H. Lee, H.-J. Shin, J. Lee, I.-Y. Lee, G.-H. Kim, J.-Y. Choi and S.-W. Kim, Nano Lett. 12, 714 (2012).

    Article  ADS  Google Scholar 

  63. K. K. Kim, A. Hsu, X. T. Jia, S. M. Kim, Y. M. Shi, M. Dresselhaus, T. Palacios and J. Kong, ACS NANO 6, 8583 (2012).

    Article  Google Scholar 

  64. Y. H. Lee et al., RSC Adv. 2, 111 (2012).

    Article  Google Scholar 

  65. G. Kim, A. R. Jang, H. Y. Jeong, Z. Lee, D. J. Kang and H. S. Shin, Nano Letters 13, 1834 (2013).

    Google Scholar 

  66. Y. Gao, W. Ren, T. Ma, Z. Liu, Y. Zhang, W.-B. Liu, L.-P. Ma, X. Ma and H.-M. Cheng, ACS NANO 7, 5199 (2013).

    Article  Google Scholar 

  67. G. Wolf, J. Baumann, F. Baitalow and F. P. Hoffmann, Thermochim. Acta 343, 19 (2000).

    Article  Google Scholar 

  68. F. Baitalow, J. Baumann, G. Wolf, K. Jaenicke-Rossler and G. Leitner, Thermochimi. Acta 391, 159 (2002).

    Article  Google Scholar 

  69. J. Baumann, E. Baitalow and G. Wolf, Thermochim. Acta 430, 9 (2005).

    Article  Google Scholar 

  70. P. J. Fazen, J. S. Beck, A. T. Lynch, E. E. Remsen and L. G. Sneddon, Chem. Mat. 2, 96 (1990).

    Article  Google Scholar 

  71. P. J. Fazen, E. E. Remsen, J. S. Beck, P. J. Carroll, A. R. McGhie and L. G. Sneddon, Chem. Mat. 7, 1942 (1995).

    Article  Google Scholar 

  72. S. Thiele, A. Reina, P. Healey, J. Kedzierski, P. Wyatt, P.-L. Hsu, C. Keast, J. Schaefer and J. Kong, Nanotechnology 21, (2010).

  73. R. V. Gorbachev et al., Small 7, 465 (2011).

    Article  Google Scholar 

  74. N. G. Rudawski, K. S. Jones and R. Gwilliam, Mater. Sci. Eng. R. 61, 40 (2008).

    Article  Google Scholar 

  75. X. Li et al., Science 324, 1312 (2009).

    Article  ADS  Google Scholar 

  76. P. Y. Huang et al., Nature 469, 389 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Hee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.K., Kim, S.M. & Lee, Y.H. A new horizon for hexagonal boron nitride film. Journal of the Korean Physical Society 64, 1605–1616 (2014). https://doi.org/10.3938/jkps.64.1605

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.1605

PACS numbers

Keywords

Navigation