Skip to main content
Log in

The effect of high-resolution parallel-hole collimator materials with a pixelated semiconductor SPECT system at equivalent sensitivities: Monte Carlo simulation studies

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In nuclear medicine, the use of a pixelated semiconductor detector with cadmium telluride (CdTe) or cadmium zinc telluride (CdZnTe) is of growing interest for new devices. Especially, the spatial resolution can be improved by using a pixelated parallel-hole collimator with equal holes and pixel sizes based on the above-mentioned detector. High-absorption and high-stopping-power pixelated parallel-hole collimator materials are often chosen because of their good spatial resolution. Capturing more gamma rays, however, may result in decreased sensitivity with the same collimator geometric designs. Therefore, a trade-off between spatial resolution and sensitivity is very important in nuclear medicine imaging. The purpose of this study was to compare spatial resolutions using a pixelated semiconductor single photon emission computed tomography (SPECT) system with lead, tungsten, gold, and depleted uranium pixelated parallel-hole collimators at equal sensitivity. We performed a simulation study of the PID 350 (Ajat Oy Ltd., Finland) CdTe pixelated semiconductor detector (pixel size: 0.35 × 0.35 mm2) by using a Geant4 Application for Tomographic Emission (GATE) simulation. Spatial resolutions were measured with different collimator materials at equivalent sensitivities. Additionally, hot-rod phantom images were acquired for each source-to-collimator distance by using a GATE simulation. At equivalent sensitivities, measured averages of the full width at half maximum (FWHM) using lead, tungsten, and gold were 4.32, 2.93, and 2.23% higher than that of depleted uranium, respectively. Furthermore, for the full width at tenth maximum (FWTM), measured averages when using lead, tungsten, and gold were 6.29, 4.10, and 2.65% higher than that of depleted uranium, respectively. Although, the spatial resolution showed little differences among the different pixelated parallel-hole collimator materials, lower absorption and stopping power materials such as lead and tungsten had relatively better characteristics at specific sensitivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abe et al., Eur. J. Nucl. Med. Mol. Img. 30, 805 (2003).

    Article  Google Scholar 

  2. S. J. Park, C. L. Lee, H. M. Cho and H. J. Kim, J. Korean Phys. Soc. 60, 1145 (2012).

    Article  ADS  Google Scholar 

  3. L. Verger et al., IEEE Trans. Nucl. Sci. 51, 3111 (2004).

    Article  ADS  Google Scholar 

  4. T. Kusayanagi and K. Ogawa, IEEE Nucl. Sci. Symp. Conf. Rec. M09-341, 3409 (2009).

    Google Scholar 

  5. K. Ogawa and M. Muraishi, IEEE Trans. Nucl. Sci. 57, 17 (2010).

    Article  ADS  Google Scholar 

  6. Y. J. Lee, S. J. Park, S. W. Lee, D. H. Kim, Y. S. Kim and H. J. Kim, J. Korean Phys. Soc. 62, 1317 (2013).

    Article  ADS  Google Scholar 

  7. K. Vunckx, D. Beque, M. Defrise and J. Nuyts, IEEE Trans. Nucl. Sci. 27, 36 (2008).

    Google Scholar 

  8. T. Zeniya et al., Ann. Nucl. Med. 20, 409 (2006).

    Article  Google Scholar 

  9. Y. J. Lee, H. J. Ryu, H. M. Cho, S. W. Lee, Y. N. Choi and H. J. Kim, JINST 8, C01044 (2013).

    Google Scholar 

  10. S. Yamamoto, H. Watabe, Y. Kanai, E. Shimosegawa and J. Hatazawa, Med. Phys. 39, 581 (2012).

    Article  Google Scholar 

  11. M. F. Smith, R. J. Jaszczak, H. Wang and J. Li, IEEE Trans. Nucl. Sci. 44, 74 (1997).

    Article  ADS  Google Scholar 

  12. D. Lazaro et al., Phys. Med. Biol. 49, 271 (2004).

    Article  Google Scholar 

  13. S. Jan et al., Phys. Med. Biol. 49, 4543 (2004).

    Article  Google Scholar 

  14. S. Staelens, D. Strul, G. Santin, S. Vandenberghe, M. Koole, Y. D. Asseler, I. Lemahieu and R. V. Walle, Phys. Med. Biol. 48, 3201 (2003).

    Article  Google Scholar 

  15. D. Lazaro, Z. EI. Bitar, V. Breton, D. Hill and I. Buvat, Phys. Med. Biol. 50, 3739 (2005).

    Article  Google Scholar 

  16. T. Takahashi and S. Watanabe, IEEE Trans. Nucl. Sci. 48, 950 (2001).

    Article  ADS  Google Scholar 

  17. C. Scheiber, Nucl. Instrum. Meth. A 448, 513 (2000).

    Article  ADS  Google Scholar 

  18. L. Verger, J. P. Bonnefoy, F. Glasser and P. O. Buffet, J. Electronic Mat. 26, 738 (1997).

    Article  ADS  Google Scholar 

  19. S. Kimiaei and S. A. Larsson, Phys. Med. Biol. 43, 647 (1998).

    Article  Google Scholar 

  20. H. Wieczorek and A. Goedicke, IEEE Trans. Nucl. Sci. 53, 1102 (2006).

    Article  ADS  Google Scholar 

  21. H. O. Anger, IEEE Trans. J. Nucl. Med. 5, 515 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Joung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YJ., Kim, DH. & Kim, HJ. The effect of high-resolution parallel-hole collimator materials with a pixelated semiconductor SPECT system at equivalent sensitivities: Monte Carlo simulation studies. Journal of the Korean Physical Society 64, 1055–1062 (2014). https://doi.org/10.3938/jkps.64.1055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.1055

Keywords

Navigation