Skip to main content
Log in

Dual-concentric LiNbO3/P(VDF-TrFE) copolymer transducer for high-frequency ultrasound imaging

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this paper, a dual-concentric transducer made of LiNbO3 (lithium niobate) and P(VDF-TrFE) (poly(vinylidene fluoride-trifluoroethylene)) copolymer for high-frequency ultrasound imaging is presented. Typically, LiNbO3 is a good transmitter because it has a high-electromechanical-coupling coefficient. Meanwhile, the P(VDF-TrFE) copolymer has been frequently used as a receiver because it has a high voltage constant and a low acoustic impedance capable of providing a transducer with a broad bandwidth. In the proposed dual-concentric transducer, the ultrasound is transmitted by an outer-ring-type transducer made of LiNbO3, and the reflected pulse echo signal is received by an inner-disk-type transducer made of the P(VDF-TrFE) copolymer. This study showed the feasibility of a dual-concentric LiNbO3/P(VDF-TrFE) copolymer transducer capable of simultaneously achieving a high sensitivity and a broad bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D. A. Christopher and D. H. Turnbull, Ultrasound in Med. Biol. 26, 1 (2000).

    Article  Google Scholar 

  2. R. H. Silverman, J. Cannata, K. K. Shung, O. Gal, M. Patel, H. O. Lloyd, E. J. Feleppa and D. J. Coleman, Ultrasonic Imaging 28, 179 (2006).

    Article  Google Scholar 

  3. K. K. Shung, Diagnostic ultrasound: imaging and blood flow measurements (Taylor & Francis Group, Boca Raton, 2006).

    Google Scholar 

  4. J. M. Cannata, T. A. Ritter, W. H. Chen, R. H. Silverman and K. K. Shung, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 50, 1548 (2003).

    Article  Google Scholar 

  5. H. Kawaii, Jpn. J. Appl. Phys. 8, 975 (1969).

    Article  ADS  Google Scholar 

  6. K. Kimura, N. Hashimoto and H. Ohigashi, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 32, 566 (1985).

    Google Scholar 

  7. F. S. Foster, K. A. Harasiewicz and M. D. Sherar, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 47, 1363 (2000).

    Article  Google Scholar 

  8. E. J. W. Merks, A. Bouakaz, N. Bom, C. T. Lancee, A. F. W. van der Steen and N. de Jong, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 53, 1730 (2006).

    Article  Google Scholar 

  9. J. S. Jeong, C. H. Seo and J. T. Yen, Proc. IEEE Ultrason. Symp. (New York, USA, 2371, 2007).

    Google Scholar 

  10. H. H. Kim, J. M. Cannata, R. B. Liu, J. H. Chang, R. H. Silverman and K. K. Shung, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 55, 2683 (2008).

    Article  Google Scholar 

  11. J. H. Chang, H. H. Kim, J. W. Lee and K. K. Shung, Ultrasonics 50, 453 (2010).

    Article  Google Scholar 

  12. J. A. Jensen, Med. Biol. Eng. Comput. 34, 351 (1996).

    Article  Google Scholar 

  13. R. S. C. Cobbold, Fundamentals of biomedical ultrasound (Oxford University Press, New York, 2007).

    Google Scholar 

  14. J. S. Jeong, J. M. Cannata and K. K. Shung, Ultrasound Med. Biol. 36, 1836 (2010).

    Article  Google Scholar 

  15. J. S. Jeong and K. K. Shung, Ultrasonics 53, 455 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Seob Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, J.S. Dual-concentric LiNbO3/P(VDF-TrFE) copolymer transducer for high-frequency ultrasound imaging. Journal of the Korean Physical Society 63, 986–990 (2013). https://doi.org/10.3938/jkps.63.986

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.986

Keywords

Navigation