Skip to main content
Log in

Orthogonality parameter associated with a magnetic field gradient for single-site addressing in a 1D optical lattice

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigate the possibility of detecting atoms in a 1D optical lattice with the nearest-site resolution by using a magnetic resonance technique. A superimposed magnetic field gradient introduces a position-dependent Zeeman shift to label each site. Among the line-broadening mechanisms, we focus on sideband transitions between the motional states of the lower and the upper hyperfine levels. In addition to the sidebands of the axial motion induced by the field gradient itself, we consider those of the transverse motion induced by field misalignments with respect to the optical lattice. Parameters that determine the sideband strengths are identified in a manner analogous to the Lamb-Dicke parameter. The analysis shows that it is advantageous to use light and cold atoms in a deep optical potential well. An explicit expression for the lineshape of the hyperfine transition is obtained. We use it to calculate lineshapes for a cesium and a lithium atom in a typical optical lattice as well as those for the previously reported experiments using cesium atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch and I. Bloch, Nature 415, 39 (2002).

    Article  ADS  Google Scholar 

  2. A. Negretti, P. Treutlein and T. Calarco, Quantum Inf. Process 10, 721 (2011).

    Article  MathSciNet  Google Scholar 

  3. R. Scheunemann, F. S. Cataliotti, T. W. Hänsch and M. Weitz, Phys. Rev. A 62, R051801 (2000).

    Article  ADS  Google Scholar 

  4. K. D. Nelson, X. Li and D. S. Weiss, Nature Phys. 3, 556 (2007).

    Article  ADS  Google Scholar 

  5. M. Karsaki, L. Förster, J. M. Choi, W. Alt, A. Widera and D. Meschede, Phys. Rev. Lett. 102, 053001 (2009).

    Article  ADS  Google Scholar 

  6. C. Zhang, S.L. Rolston and S. Das Sarma, Phys. Rev. A 74, 042316 (2006).

    Article  ADS  Google Scholar 

  7. J. Sebby-Strabley, M. Anderlini, P. S. Jessen and J. V. Porto, Phys. Rev. A 73, 033605 (2006).

    Article  ADS  Google Scholar 

  8. P. J. Lee, M. Anderlini, B. L. Brown, J. Sebby-Strabley, W. D. Phillips and J. V. Porto, Phys. Rev. Lett. 99, 020402 (2007).

    Article  ADS  Google Scholar 

  9. N. Lundblad, J. M. Obrecht, I. B. Spielman and J. V. Porto, Nature Phys. 5, 575 (2009).

    Article  ADS  Google Scholar 

  10. D. Schrader, I. Dotsenko, M. Khudaverdyan, Y. Miroshnychenko, A. Rauschenbeutel and D. Meschede, Phys. Rev. Lett. 93, 150501 (2004).

    Article  ADS  Google Scholar 

  11. M. Karski, L. Förster, J. M. Choi, A. Steffen, N. Belmechri, W. Alt, D. Meschede and A. Widera, New J. Phys. 12, 065027 (2010).

    Article  ADS  Google Scholar 

  12. S. Stenholm, J. Opt. Soc. B 2, 1743 (1985).

    Article  ADS  Google Scholar 

  13. Huidong Kim, Sin Hyuk Yim and D. Cho, J. Korean Phys. Soc. 51, 1279 (2007).

    Article  ADS  Google Scholar 

  14. S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, A. Rauschenbeutel and D. Meschede, Phys. Rev. A 72, 023406 (2005).

    Article  ADS  Google Scholar 

  15. J. M. Choi and D. Cho, J. Phys. Conf. Ser. 80, 012037 (2007).

    Article  ADS  Google Scholar 

  16. V. V. Flambaum, V. A. Dzuba and A. Derevianko, Phys. Rev. Lett. 101, 220801 (2008).

    Article  ADS  Google Scholar 

  17. D. J. Wineland and W. M. Itano, Phys. Rev. A 20, 1521 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghyun Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, JM., Kim, H., Han, H.S. et al. Orthogonality parameter associated with a magnetic field gradient for single-site addressing in a 1D optical lattice. Journal of the Korean Physical Society 63, 914–921 (2013). https://doi.org/10.3938/jkps.63.914

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.914

Keywords

Navigation