Skip to main content
Log in

Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer’s disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Cramer, Restor. Neurol. Neurosci. 22, 231 (2004).

    Google Scholar 

  2. H. Matsui, K. Nishinaka, M. Oda, H. Niikawa, T. Kubori and F. Udaka, Acta Neurol. Scand. 116, 177 (2007).

    Article  Google Scholar 

  3. H. Cho, D. W. Yang, Y. M. Shon, B. S. Kim, Y. I. Kim, Y. B. Choi, K. S. Lee, Y. S. Shim, B. Yoon, W. Kim and K. J. Ahn, J. Korean Med. Sci. 23, 477 (2008).

    Article  Google Scholar 

  4. P. J. Basser and C. Pierpaoli, J. Magn. Reson. 213, 560 (2011).

    Article  ADS  Google Scholar 

  5. N. Kunimatsu, S. Aoki, A. Kunimatsu, O. Abe, H. Yamada, Y. Masutani, K. Kasai, H. Yamasue and K. Ohtomo, Psychiatry Res. 201, 136 (2012).

    Article  Google Scholar 

  6. A. Kunimatsu, S. Aoki, Y. Masutani, O. Abe, H. Mori and K. Ohtomo, Neuroradiology 45, 532 (2003).

    Article  Google Scholar 

  7. E. O. Stejskal and J. E. Tanner, J. Chem. Phys. 42, 288 (1965).

    Article  ADS  Google Scholar 

  8. D. Le Bihan and E. Breton, Compte. Rendu. Acad. Sci. 301, 1109 (1985).

    Google Scholar 

  9. D. J. Werring, C. A. Clark, G. J. Barker, A. J. Thompson and D. H. Miller, Neurology 52, 1626 (1999).

    Article  Google Scholar 

  10. S. B. Hong, Y. W. Shin, D. J. Kim, W. J. Moon, E. C. Chung, J. S. Lee, H. J. Park and J. S. Kwon, J. Korean Neuropsychiatr. Assoc. 45, 316 (2006).

    Google Scholar 

  11. D. H. Shin, S. O. Park, C. W. Cho, S. N. Yoon, M. H. Lee and D. O. Shin, J. Korean Med. Phys. 15, 45 (2004).

    Google Scholar 

  12. R. J. Ferrari, Med. Biol. Eng. Comput. 51, 71 (2013).

    Article  Google Scholar 

  13. J. Léveillé, G. Demonceau and R. C. Walovitch, J. Nucl. Med. 33, 480 (1992).

    Google Scholar 

  14. M. Lehtovirta, J. Kuikka, S. Helisalmi, P. Hartikainen, A. Mannermaa, M. Ryynänen, P. Riekkinen and H. Soininen, J. Neurol. Neurosurg. Psychiatry 64, 742 (1998).

    Article  Google Scholar 

  15. R. Stahl, O. Dietrich, S. J. Teipel, H. Hampel, M. F. Reiser and S. O. Schoenberg, Radiology 243, 483 (2007).

    Article  Google Scholar 

  16. O. Sabri, E. B. Ringelstein, D. Hellwig, R. Schneider, M. Schreckenberger, H. J. Kaiser, M. Mull and U. Buell, Stroke 30, 556 (1999).

    Article  Google Scholar 

  17. O. Mayzel-Oreg, Y. Assaf, A. Gigi, D. Ben-Bashat, R. Verchovsky, M. Mordohovitch, M. Graif, T. Hendler, A. Korczyn and Y. Cohen, J. Neurol. Sci. 257, 105 (2007).

    Article  Google Scholar 

  18. S. J. Teipel, T. Meindl, L. Grinberg, H. Heinsen and H. Hampel, Eur. J. Nucl. Med. Mol. Imaging 35, S58 (2008).

    Article  Google Scholar 

  19. D. Le Bihan, J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko and H. Chabriat, J. Magn. Reson. Imaging 13, 534 (2001).

    Article  Google Scholar 

  20. C. Beaulieu and P. S. Allen, Magn. Reson. Med. 31, 394 (1994).

    Article  Google Scholar 

  21. Y. S. Shim, D. W. Yang, B. S. Kim, Y. M. Shon, W. J. Kim, S. B. Lee, Y. A. Chung and H. S. Sohn, J. Clini. Neurol. 23, 307 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JS., Im, IC., Kang, SM. et al. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders. Journal of the Korean Physical Society 63, 83–88 (2013). https://doi.org/10.3938/jkps.63.83

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.83

Keywords

Navigation