An Ising-like model for monolayer-monolayer coupling in lipid bilayers

Abstract

We have proposed the Ising bilayer model to study the domain growth dynamics in lipid bilayers. Interactions within and between layers are adopted from recent experimental and theoretical data. We investigate the effects of the mismatch area on the domain coarsening dynamics in both symmetric and asymmetric lipid bilayers. To explore domain coarsening, we used the Monte Carlo (MC) method with a standard Kawasaki dynamics to simulate the systems. The results show that domains on both layers grow following a power-law and that the domains grow slower when the mismatch areas are increased.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    S. L. Veatch and S. L. Keller, Phys. Rev. Letts. 89, 268101 (2002).

    ADS  Article  Google Scholar 

  2. [2]

    S. L. Veatch and S. L. Keller, Biochim. Biophys. Acta 1786, 172 (2005).

    Article  Google Scholar 

  3. [3]

    S. L. Veatch S and S. L. Keller, Biophys. J. 85, 3074 (2003).

    Article  Google Scholar 

  4. [4]

    V. Kiessling, C. Wan and L. Tamm, Biochim. Biophys. Acta 1788, 64 (2009).

    Article  Google Scholar 

  5. [5]

    M. D. Collins and S. L. Keller, Proc. Natl. Acad. Sci. U.S.A. 105, 124 (2008).

    ADS  Article  Google Scholar 

  6. [6]

    S. May, Soft Matter. 5, 3148 (2009).

    ADS  Article  Google Scholar 

  7. [7]

    P. Almeida, Biochim. Biophys. Acta 1788, 72 (2009).

    Article  Google Scholar 

  8. [8]

    D. Saeki D, T. Hamada and K. Yoshikawa, J. Phys. Soc. Jpn. 75, 013602 (2006).

    ADS  Article  Google Scholar 

  9. [9]

    M. Yanagisawa, M. Imai, T. Masui, S. Komura and T. Ohta, Biophys. J. 92, 115 (2007).

    ADS  Article  Google Scholar 

  10. [10]

    X. Liang, L. Li, F. Qiu and Y. Yang, Physica A 389, 3965 (2010).

    ADS  Article  Google Scholar 

  11. [11]

    M. Laradji and P. B. S. Kumar, Phys. Rev. Lett. 93, 198105 (2004).

    ADS  Article  Google Scholar 

  12. [12]

    M. Laradji and P. B. S. Kumar, Phys. Rev. E 73, 1 (2006).

    Article  Google Scholar 

  13. [13]

    M. L. Frazier, J. R. Wright, A. Pokorny and P. F. F. Almeida, Biophys. J. 92, 2422 (2007).

    ADS  Article  Google Scholar 

  14. [14]

    G. G. Putzel and M. Schick M, Biophys. J. 94, 869 (2008).

    Article  Google Scholar 

  15. [15]

    A. Wagner, S. Loew and S. May, Biophys. J. 93, 4268 (2007).

    ADS  Article  Google Scholar 

  16. [16]

    A. R. Honerkamp-Smith, P. Cicuta, M. D. Collins, S. L. Veatch, and M. den Nijs M, Biophys. J. 95, 236 (2008).

    Article  Google Scholar 

  17. [17]

    A. R. Honerkamp-Smith, S. L. Veatch and S. L. Keller, Biochim. Biophys. Acta 1788, 53 (2009).

    Article  Google Scholar 

  18. [18]

    H. M. McConnell, ACS Chem. Biol. 3, 265 (2008).

    Article  Google Scholar 

  19. [19]

    J. Oitmaa and I. G. Enting, Physica A 8, 1097 (1975).

    Google Scholar 

  20. [20]

    E. Sloutskin E and M. Gitterman, Physica A 376, 337 (2007).

    ADS  Article  Google Scholar 

  21. [21]

    A. Radhakrishnan and H. McConnell, Proc. Natl. Acad. Sci. U.S.A. 102, 12662 (2005).

    ADS  Article  Google Scholar 

  22. [22]

    K. Kawasaki, C. Domb and M. Green, Phase Transitions and Critical Phenomena (Academic, New York, 1976).

    Google Scholar 

  23. [23]

    M. Newman and G. Barkema, Monte Carlo methods in statistical physics (Oxford University Press, USA, 1999).

    Google Scholar 

  24. [24]

    S. M. Krisovitch and S. L. Regen, J. Am. Chem. Soc. 114, 9828 (1992).

    Article  Google Scholar 

  25. [25]

    A. Tsamaloukas, H. Szadkowska and H. Heerklotz, J. Phys. Condens. Matter 18, S1125 (2006).

    ADS  Article  Google Scholar 

  26. [26]

    R. Reigada, J. Buceta, J. Gomez, F Sagues and K. Lindenberg, J. Chem. Phys. 128, 025102 (2008).

    ADS  Article  Google Scholar 

  27. [27]

    J. Gomez, F. Sagues and R. Reigada, Phys. Rev. E 77, 21907 (2008).

    ADS  Article  Google Scholar 

  28. [28]

    P. F. Almeida, Biophys. J. 100, 420 (2011).

    ADS  Article  Google Scholar 

  29. [29]

    P. F. Almeida, A. Best and A. Hinderliter, Biophys. J. 101, 1930 (2011).

    ADS  Article  Google Scholar 

  30. [30]

    M. Collins, Biophys. J. 94, 32 (2008).

    Article  Google Scholar 

  31. [31]

    H. J. Risselada and S. J. Marrink, Proc. Natl. Acad. Sci. U.S.A. 105, 17367 (2008).

    ADS  Article  Google Scholar 

  32. [32]

    L. Onsager, Phys. Rev. 65, 117 (1944).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  33. [33]

    J. Gomez, F. Sagues and R. Reigada, J. Chem. Phys. 129, 184115 (2008).

    ADS  Article  Google Scholar 

  34. [34]

    S. Ramachandran, S. Komura and G. Gompper, Eur. Phys. Letts. 89, 56001 (2010).

    ADS  Article  Google Scholar 

  35. [35]

    J. Ehrig, E. P. Petrov and P. Schwille, New J. Phys. 13, 045019 (2011).

    ADS  Article  Google Scholar 

  36. [36]

    K. Sornbundit, W. Ngamsaad, C. Modchang, N. Nuttavut, D. Triampo and W. Triampo, Int. J. Phys. Sci. 7, 6034 (2012).

    Google Scholar 

  37. [37]

    J. F. Marko and G. T. Barkerma, Phys. Rev. E 52, 2522 (1995).

    ADS  Article  Google Scholar 

  38. [38]

    S. Puri and V. Wadhawan, Kinetics of Phase transitions (CRC Press, USA, 2009).

    Google Scholar 

  39. [39]

    S. van Gemmert, G. T. Barkerma and S. Puri, Phys. Rev. E. 72, 046131 (2005).

    ADS  Article  Google Scholar 

  40. [40]

    J. G. Amar, F. E. Sullivan and R. D. Mountain, Phys. Rev. B 37, 196 (1988)

    ADS  Article  Google Scholar 

  41. [41]

    K. Simons and D Toomre, Nat. Rev. Mol. Cell. Biol. 1, 31 (2000)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kan Sornbundit.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sornbundit, K., Modchang, C., Nuttavut, N. et al. An Ising-like model for monolayer-monolayer coupling in lipid bilayers. Journal of the Korean Physical Society 63, 71–77 (2013). https://doi.org/10.3938/jkps.63.71

Download citation

Keywords

  • Lipid bilayers
  • Ising bilayer model
  • Domain growth dynamics
  • Monte Carlo method
  • Inter-layer coupling
  • Cell signaling