Advertisement

Journal of the Korean Physical Society

, Volume 63, Issue 1, pp 71–77 | Cite as

An Ising-like model for monolayer-monolayer coupling in lipid bilayers

  • Kan Sornbundit
  • Charin Modchang
  • Narin Nuttavut
  • Waipot Ngamsaad
  • Darapond Triampo
  • Wannapong Triampo
Article

Abstract

We have proposed the Ising bilayer model to study the domain growth dynamics in lipid bilayers. Interactions within and between layers are adopted from recent experimental and theoretical data. We investigate the effects of the mismatch area on the domain coarsening dynamics in both symmetric and asymmetric lipid bilayers. To explore domain coarsening, we used the Monte Carlo (MC) method with a standard Kawasaki dynamics to simulate the systems. The results show that domains on both layers grow following a power-law and that the domains grow slower when the mismatch areas are increased.

Keywords

Lipid bilayers Ising bilayer model Domain growth dynamics Monte Carlo method Inter-layer coupling Cell signaling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. L. Veatch and S. L. Keller, Phys. Rev. Letts. 89, 268101 (2002).ADSCrossRefGoogle Scholar
  2. [2]
    S. L. Veatch and S. L. Keller, Biochim. Biophys. Acta 1786, 172 (2005).CrossRefGoogle Scholar
  3. [3]
    S. L. Veatch S and S. L. Keller, Biophys. J. 85, 3074 (2003).CrossRefGoogle Scholar
  4. [4]
    V. Kiessling, C. Wan and L. Tamm, Biochim. Biophys. Acta 1788, 64 (2009).CrossRefGoogle Scholar
  5. [5]
    M. D. Collins and S. L. Keller, Proc. Natl. Acad. Sci. U.S.A. 105, 124 (2008).ADSCrossRefGoogle Scholar
  6. [6]
    S. May, Soft Matter. 5, 3148 (2009).ADSCrossRefGoogle Scholar
  7. [7]
    P. Almeida, Biochim. Biophys. Acta 1788, 72 (2009).CrossRefGoogle Scholar
  8. [8]
    D. Saeki D, T. Hamada and K. Yoshikawa, J. Phys. Soc. Jpn. 75, 013602 (2006).ADSCrossRefGoogle Scholar
  9. [9]
    M. Yanagisawa, M. Imai, T. Masui, S. Komura and T. Ohta, Biophys. J. 92, 115 (2007).ADSCrossRefGoogle Scholar
  10. [10]
    X. Liang, L. Li, F. Qiu and Y. Yang, Physica A 389, 3965 (2010).ADSCrossRefGoogle Scholar
  11. [11]
    M. Laradji and P. B. S. Kumar, Phys. Rev. Lett. 93, 198105 (2004).ADSCrossRefGoogle Scholar
  12. [12]
    M. Laradji and P. B. S. Kumar, Phys. Rev. E 73, 1 (2006).CrossRefGoogle Scholar
  13. [13]
    M. L. Frazier, J. R. Wright, A. Pokorny and P. F. F. Almeida, Biophys. J. 92, 2422 (2007).ADSCrossRefGoogle Scholar
  14. [14]
    G. G. Putzel and M. Schick M, Biophys. J. 94, 869 (2008).CrossRefGoogle Scholar
  15. [15]
    A. Wagner, S. Loew and S. May, Biophys. J. 93, 4268 (2007).ADSCrossRefGoogle Scholar
  16. [16]
    A. R. Honerkamp-Smith, P. Cicuta, M. D. Collins, S. L. Veatch, and M. den Nijs M, Biophys. J. 95, 236 (2008).CrossRefGoogle Scholar
  17. [17]
    A. R. Honerkamp-Smith, S. L. Veatch and S. L. Keller, Biochim. Biophys. Acta 1788, 53 (2009).CrossRefGoogle Scholar
  18. [18]
    H. M. McConnell, ACS Chem. Biol. 3, 265 (2008).CrossRefGoogle Scholar
  19. [19]
    J. Oitmaa and I. G. Enting, Physica A 8, 1097 (1975).Google Scholar
  20. [20]
    E. Sloutskin E and M. Gitterman, Physica A 376, 337 (2007).ADSCrossRefGoogle Scholar
  21. [21]
    A. Radhakrishnan and H. McConnell, Proc. Natl. Acad. Sci. U.S.A. 102, 12662 (2005).ADSCrossRefGoogle Scholar
  22. [22]
    K. Kawasaki, C. Domb and M. Green, Phase Transitions and Critical Phenomena (Academic, New York, 1976).Google Scholar
  23. [23]
    M. Newman and G. Barkema, Monte Carlo methods in statistical physics (Oxford University Press, USA, 1999).zbMATHGoogle Scholar
  24. [24]
    S. M. Krisovitch and S. L. Regen, J. Am. Chem. Soc. 114, 9828 (1992).CrossRefGoogle Scholar
  25. [25]
    A. Tsamaloukas, H. Szadkowska and H. Heerklotz, J. Phys. Condens. Matter 18, S1125 (2006).ADSCrossRefGoogle Scholar
  26. [26]
    R. Reigada, J. Buceta, J. Gomez, F Sagues and K. Lindenberg, J. Chem. Phys. 128, 025102 (2008).ADSCrossRefGoogle Scholar
  27. [27]
    J. Gomez, F. Sagues and R. Reigada, Phys. Rev. E 77, 21907 (2008).ADSCrossRefGoogle Scholar
  28. [28]
    P. F. Almeida, Biophys. J. 100, 420 (2011).ADSCrossRefGoogle Scholar
  29. [29]
    P. F. Almeida, A. Best and A. Hinderliter, Biophys. J. 101, 1930 (2011).ADSCrossRefGoogle Scholar
  30. [30]
    M. Collins, Biophys. J. 94, 32 (2008).CrossRefGoogle Scholar
  31. [31]
    H. J. Risselada and S. J. Marrink, Proc. Natl. Acad. Sci. U.S.A. 105, 17367 (2008).ADSCrossRefGoogle Scholar
  32. [32]
    L. Onsager, Phys. Rev. 65, 117 (1944).MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. [33]
    J. Gomez, F. Sagues and R. Reigada, J. Chem. Phys. 129, 184115 (2008).ADSCrossRefGoogle Scholar
  34. [34]
    S. Ramachandran, S. Komura and G. Gompper, Eur. Phys. Letts. 89, 56001 (2010).ADSCrossRefGoogle Scholar
  35. [35]
    J. Ehrig, E. P. Petrov and P. Schwille, New J. Phys. 13, 045019 (2011).ADSCrossRefGoogle Scholar
  36. [36]
    K. Sornbundit, W. Ngamsaad, C. Modchang, N. Nuttavut, D. Triampo and W. Triampo, Int. J. Phys. Sci. 7, 6034 (2012).Google Scholar
  37. [37]
    J. F. Marko and G. T. Barkerma, Phys. Rev. E 52, 2522 (1995).ADSCrossRefGoogle Scholar
  38. [38]
    S. Puri and V. Wadhawan, Kinetics of Phase transitions (CRC Press, USA, 2009).CrossRefGoogle Scholar
  39. [39]
    S. van Gemmert, G. T. Barkerma and S. Puri, Phys. Rev. E. 72, 046131 (2005).ADSCrossRefGoogle Scholar
  40. [40]
    J. G. Amar, F. E. Sullivan and R. D. Mountain, Phys. Rev. B 37, 196 (1988)ADSCrossRefGoogle Scholar
  41. [41]
    K. Simons and D Toomre, Nat. Rev. Mol. Cell. Biol. 1, 31 (2000)CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  • Kan Sornbundit
    • 1
  • Charin Modchang
    • 1
  • Narin Nuttavut
    • 1
  • Waipot Ngamsaad
    • 2
  • Darapond Triampo
    • 3
    • 4
  • Wannapong Triampo
    • 5
    • 6
    • 7
  1. 1.Biophysics Group, Department of Physics, Faculty of ScienceMahidol UniversityBangkokThailand
  2. 2.School of ScienceUniversity of PhayaoPhayaoThailand
  3. 3.Department of Chemistry, Faculty of ScienceMahidol UniversityBangkokThailand
  4. 4.Centre of Excellence in MathematicsCHEBangkokThailand
  5. 5.Institute for Innovative LearningMahidol UniversityNakhon PathomThailand
  6. 6.Biophysics Group, Department of Physics, Faculty of ScienceMahidol UniversityBangkokThailand
  7. 7.ThEP CenterCHEBangkokThailand

Personalised recommendations