Skip to main content
Log in

Dosimetric evaluation of a moving tumor target in intensity-modulated radiation therapy (IMRT) for lung cancer patients

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Immobilization plays an important role in intensity-modulated radiation therapy (IMRT). The application of IMRT in lung cancer patients is very difficult due to the movement of the tumor target. Patient setup in radiation treatment demands high accuracy because IMRT employs a treatment size of a 1mm pixel unit. Hence, quality assurance of the dose delivered to patients must be at its highest. The radiation dose was evaluated for breathing rates of 9, 14, and 18 breaths per minute (bpm) for tumor targets moving up and down by 1.0 cm and 1.5 cm. The dose of the moving planned target volume (PTV) was measured by using a thermo-luminescent dosimeter (TLD) and Gafchromic™ EBT film. The measurement points were 1.0 cm away from the top, the bottom and the left and the right sides of the PTV center. The evaluated dose differences ranged from 94.2 to 103.8%, from 94.4 to 105.4%, and from 90.7 to 108.5% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.0 cm. The mean values of the doses were 101.4, 99.9, and 99.5% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.0 cm. Meanwhile, the evaluated dose differences ranged from 93.6 to 105.8%, from 95.9 to 111.5%, and from 96.2 to 111.7% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.5 cm. The mean values of the doses were 102.3, 103.4, and 103.1% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.5 cm. Therefore, we suggest that IMRT can be used in the treatment of lung cancer patients with vertical target movements within the range of 1.0 to 1.5 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. C. Chao, Practical essentials of Intensity Modulated Radiation Therap, 2nd ed. (Lippincott Williams and Wilkins, Philadelphia, 2005).

    Google Scholar 

  2. D. P. Gierga, G. T. Y. Chen and J. H. Kung, Int. J. Radiat. Oncol. Biol. Phys. 58(5), 1584 (2004).

    Article  Google Scholar 

  3. K. Kitamura, H. Shirato and Y. Seppenwoolde, Int. J. Radiat. Oncol. Biol. Phys. 56(1), 221 (2003).

    Article  Google Scholar 

  4. D. Boehmer, J. Bohsung and I. Eichwurzel, Radiother. Oncol. 71(3), 319 (2004).

    Article  Google Scholar 

  5. J. R. Palta and T. R. Mackie, Intensity-Modulated Radiation Therapy / The State of the Art. (Medical Physics Publishing, Wisconsin, 2003).

    Google Scholar 

  6. S. Clippe, D. Sarrut and C Malet, Int. J. Radiat. Oncol. Biol. Phys. 56(1), 259 (2003).

    Article  Google Scholar 

  7. S. A. Oh, M. K. Kang and S. K. Kim, J. Korean Phy. Soc. 60(11), 1973 (2012).

    Article  ADS  Google Scholar 

  8. J. C. Stroom and J. M. Heijmen, Radiot. & Oncol. 64, 75 (2003).

    Article  Google Scholar 

  9. J. Chavaudra and A. Bridier, Cancer & Radiother. 5, 472 (2001).

    Article  Google Scholar 

  10. G. Thomas, J. Valen and H. Justin, Int. J. Radiat. Oncol. Biol. Phys. 68(4), 1030 (2007).

    Article  Google Scholar 

  11. M. S. Rebecca, R. R. Chester and D. S. Daniel, Int. J. Radiat. Oncol. Biol. Phys. 67(2), 601 (2007).

    Article  Google Scholar 

  12. M. A. Stltzer, C. S. Yap and D. H. Silverman, J. Nucl. Med. 43, 752 (2002).

    Google Scholar 

  13. J. Y. Chang, X. Zhang and X. Wang, J. Radiat. Oncol. Biol. Phys. 65, 1087 (2006).

    Article  Google Scholar 

  14. M. B. Joseph, A. R. Davis and G. R. Andrew, Int. J. Radiat. Oncol. Biol. Phys. 68(4), 1229 (2007).

    Article  Google Scholar 

  15. C. R. David, W. S. Roy and L, Zhongxing, Int. J. Radiat. Oncol. Biol. Phys. 69(2), 350 (2007).

    Article  Google Scholar 

  16. R. Price, E. Hanks and S. W. Mcneeley, Int. J. Radiat. Oncol. Biol. Phys. 53, 236 (2002).

    Article  Google Scholar 

  17. M. Rao, J. Wu and D. Cao, Int. J. Radiat. Oncol. Biol. Phys. 83, E251 (2012).

    Google Scholar 

  18. J. S. Shin, E. Shin and Y. Han, Radiat. Oncol. J. 29, 206 (2011).

    Article  Google Scholar 

  19. S. K. Kim, M. S. Kim and S. M. Yun, Kor. J. Med. Phy. 17, 114 (2006).

    Google Scholar 

  20. S. B. Jiang, J. Wolfgang and G. S. Mageras, Int. J. Radiat. Oncol. Biol. Phys. 71, S103 (2008).

    Article  Google Scholar 

  21. E. D. Ehler and W. A. Tome, Radiot. & Oncol. 88, 319 (2008).

    Article  Google Scholar 

  22. T. Kimura, I. Nishibuchi and Y. Murakami, Int. J. Radiat. Oncol. Biol. Phys. 82, E663 (2012).

    Article  Google Scholar 

  23. P. Keall, S. Vedam and R. George, Med. Dos. 31, 152 (2006).

    Article  Google Scholar 

  24. J. W. Wong, M. B. Sharpe and D. A. Jaffray, Int. J. Radiat. Oncol. Biol. Phys. 44, 911 (1999).

    Article  Google Scholar 

  25. V. M. Remouchamps, F. A. Vicini and M. B. Sharpe, Int. J. Radiat. Oncol. Biol. Phys. 55, 392 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Kyu Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.K., Kang, M.K., Yea, J.W. et al. Dosimetric evaluation of a moving tumor target in intensity-modulated radiation therapy (IMRT) for lung cancer patients. Journal of the Korean Physical Society 63, 67–70 (2013). https://doi.org/10.3938/jkps.63.67

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.67

Keywords

Navigation