Advertisement

Journal of the Korean Physical Society

, Volume 63, Issue 3, pp 575–578 | Cite as

Magnetic phase diagram of UCoAl

  • Tatsuma D. Matsuda
  • Naoyuki Tateiwa
  • Etsuji Yamamoto
  • Yoshinori Haga
  • Yoshichika Ōnuki
  • Dai Aoki
  • Jacques Flouquet
  • Zachary Fisk
Article

Abstract

We report precision c-axis magnetic measurements on a high-quality single crystal of the heavy fermion metamagnet UCoAl. The metamagnetic transition at H M changes from 1st order at low temperature to a crossover at high temperature. H M is nearly linearly increasing with increasing temperature up to a critical temperature T 0. The critical temperature T 0 is determined from both the field and the temperature dependences of magnetization to be ∼ 11 K. The field dependence of the Sommerfeld coefficient γ is estimated from M(T) by using a Maxwell relation. γ(H) shows a step-like decrease at H M . This behavior is consistent with the previous reports of specific heat and resistivity measurements at low temperatures.

Keywords

UCoAl Metamagnetism Phase diagram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Belitz, T. R. Kirkpatrick and J. Rollbühler, Phys. Rev. Lett. 94, 247205 (2005).ADSCrossRefGoogle Scholar
  2. [2]
    V. Taufour, D. Aoki, G. Knebel and J. Flouquet, Phys. Rev. Lett. 105, 217201 (2010).ADSCrossRefGoogle Scholar
  3. [3]
    H. Kotegawa, V. Taufour, D. Aoki, G. Knebel and J. Flouquet, J. Phys. Soc. Jpn. 80, 083703 (2011).ADSCrossRefGoogle Scholar
  4. [4]
    D. Aoki, T. Combier, V. Taufour, T. D. Matsuda, G. Knebel, H. Kotegawa and J. Flouquet, J. Phys. Soc. Jpn. 80, 094711 (2011).ADSCrossRefGoogle Scholar
  5. [5]
    A. V. Andreev, R. Z. Levitin, Y. F. Popov and R. Y. Yumaguzhin, Sov. Phys. Solid State 27, 1145 (1985).Google Scholar
  6. [6]
    V. Sechovský, L. Havela, L. Heuzil, A. V. Andreev, G. Hilsher and C. Schmitzer, J. Less-Common Metals 121, 169 (1986).CrossRefGoogle Scholar
  7. [7]
    A. V. Andreev, K. Koyama, N. V. Mushnikov. V. Sechovsky, Y. Shiokawa, I. Satoh and K. Watanabe, J. Alloys. Comp. 441, 33 (2007).CrossRefGoogle Scholar
  8. [8]
    Y. Ishii, M. Kosaka, Y. Uwatoko, A. V. Andreev. and V. Sechovský, Physica B 334, 160 (2003).ADSCrossRefGoogle Scholar
  9. [9]
    N. V. Mushnikov, T. Goto, K. Kamishima, H. Yamada, A. V. Andreev, Y. Shiokawa, A. Iwao and V. Sechovský, Phys. Rev. B 59, 6877 (1999).ADSCrossRefGoogle Scholar
  10. [10]
    T. D. Matsuda, Y. Aoki, H. Sugawara, H. Sato, A. V. Andreev and V. Sechovský, J. Phys. Soc. Jpn. 68, 3922 (1999).ADSCrossRefGoogle Scholar
  11. [11]
    F. Honda, T. Kagayama, G. Oomi, L. Havela, V. Sechovský and A. Andreev, Physica B 284–288, 1299 (2000).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  • Tatsuma D. Matsuda
    • 1
  • Naoyuki Tateiwa
    • 1
  • Etsuji Yamamoto
    • 1
  • Yoshinori Haga
    • 1
  • Yoshichika Ōnuki
    • 1
    • 2
  • Dai Aoki
    • 3
    • 4
  • Jacques Flouquet
    • 4
  • Zachary Fisk
    • 1
    • 5
  1. 1.ASRCJapan Atomic Energy AgencyTokai, IbarakiJapan
  2. 2.Gaduate School of ScienceOsaka UniversityToyonaka, OsakaJapan
  3. 3.Institute for Material ResearchTohoku UniversityOarai, IbarakiJapan
  4. 4.INAC/SPSMSCEA-GrenobleGrenobleFrance
  5. 5.University of CaliforniaIrvineUSA

Personalised recommendations