Skip to main content
Log in

Effects of metallic contaminant type and concentration on photovoltaic performance degradation of p-type silicon solar cells

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigated the effects of the metallic contaminant type and concentration (Al, Cu, Ni, and Fe) on the minority-carrier recombination lifetime and photovoltaic performance degradation of p-type silicon solar cells. For all contaminants, the lifetime after annealing at 900 °C for 15 min decreased with increasing concentration. The sequence of higher lifetime degradation induced by metallic contamination was Al (highest), Cu, Ni, and Fe (lowest), mainly determined by causing the diffusivity length and the solubility of the metallic contaminant in silicon. The sequence of higher lifetime degradation sensitivity induced by metallic contamination was Fe, Ni, Cu, and Al, as mainly determined by the trap energy level of the metallic contaminant in silicon. The contamination degraded the power-conversion efficiency (PCE) due to both the short-circuit-current and the fill-factor degradation. The degree and sensitivity of the PCE degradation depended on the contaminant type and concentration. The degree was the highest for Al, followed by Cu, Ni, and Fe, while the sensitivity was the highest for Fe, followed by Ni, Cu, and Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Luque and S. Hegedus (Eds.), Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, West Sussex,2003).

    Google Scholar 

  2. C. P. Khattak, D. B. Joyce and F. Schmid, Production of solar-grade silicon by refining liquid metallurgical grade silicon, Annual Report NREL/SR-520-27593, December (1999), NREL.

    Google Scholar 

  3. G. Coletti, P. C. P. Bronsveld, G. Hahn, W. Warta, D. Macdonald, B. Ceccaroli, K. Wambach, N. L. Quang and J. M. Fernandez, Adv. Funct. Mater. 21, 879 (2011).

    Article  Google Scholar 

  4. J. R. Davis, A. Rohatgi, P. Rai-Choudhury, P. Blais, R. H. Hopkins and J. R. McCormick, 13thPhotovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, Inc., New York, 1978).

    Google Scholar 

  5. J. R. Davis, A. Rohatgi, P. Rai-Choudhury, P. Blais, R. H. Hopkins and J. R. McCormick, IEEE Trans. Electron Devices 27, 677 (1980).

    Article  ADS  Google Scholar 

  6. K. A. Reinhardt and W. Kern (Eds.), Handbook of Silicon Wafer Cleaning Technology (William Andrew, Inc., New York, 2008).

    Google Scholar 

  7. B. G. Streetman, Solid State Electronic Devices (Pearson Prentice Hall, New Jersey, 2006).

    Google Scholar 

  8. S. M. Sze and Kwok K. Ng (Eds.), Physics of Semiconductor Devices (John Wiley & Sons, Inc., New Jersey, 2007).

    Google Scholar 

  9. S. M. Sze (Ed.), VLSI Technology (McGraw-Hill, New York, 1988).

    Google Scholar 

  10. K. Graff, Metal Impurities in Silicon-device Fabrication (Springer, Berlin-Heidelberg, 1995).

    Book  Google Scholar 

  11. T. Yoshikawa and K. Morita, J. Electrochem. Soc. 150, G465 (2003).

    Article  Google Scholar 

  12. A. A. Istratov and E. R. Weber, Appl. Phys. A 66, 123 (1998).

    Article  ADS  Google Scholar 

  13. A. A. Istratov and E. R. Weber, J. Electrochem. Soc. 149, 21 (2002).

    Article  Google Scholar 

  14. J. G. Park, G. S. Lee, J. S. Lee, K. Kurita and H. Furuya, Mater. Sci. Eng. B 134, 249 (2006).

    Article  Google Scholar 

  15. S. A. McHugo, A. Mohammed, A. C. Thompson, B. Lai and Z. Cai, J. Appl. Phys. 91, 6396(2002).

    Article  ADS  Google Scholar 

  16. D. Macdonald, Appl. Phys. A 81, 1619(2005).

    Article  ADS  Google Scholar 

  17. D. Macdonald L. J. Geerligs and A. Azzizi, Appl. Phys. Lett. 95, 1021 (2004).

    Google Scholar 

  18. J. G. Park, K. Kurita, G. S. Lee, S. A. Shin and H. Furuya, Microelectron. Eng. 66, 247 (2003).

    Article  Google Scholar 

  19. A. A. Istratov, H. Hieslmair and E. R. Weber, Appl. Phys. A 70, 489 (2000).

    Article  ADS  Google Scholar 

  20. D. Macdonald and L. J. Geerligs, Appl. Phys. Lett. 85, 4061 (2004).

    Article  ADS  Google Scholar 

  21. M. Hourai, K. Murakami, T. Shigematsu, N. Fujino and T. Shiraiwa, Jpn. J. Appl. Phys. 28, 2413 (1989).

    Article  ADS  Google Scholar 

  22. T. S. Horanyi, T. Pavelka and P. Tutto, Appl. Surf. Sci. 63, 306 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jea-Gun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, IJ., Paik, U. & Park, JG. Effects of metallic contaminant type and concentration on photovoltaic performance degradation of p-type silicon solar cells. Journal of the Korean Physical Society 63, 47–52 (2013). https://doi.org/10.3938/jkps.63.47

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.47

Keywords

Navigation