Network characteristics of individual pigments in cyanobacterial photosystem II core complexes


Part of the excitation energy transfer (EET) characteristics of the photosystem II (PSII) comes from the interconnection between pigments. To understand the correlation between the EET and the pigments’ interaction structure, we construct a network from the EET rates which are related to both the distance between the pigments (chlorophylls and pheophytins) and their spatial orientations. Especially, we investigate how well the PS II core complex’s EET functionality can be explained by using only the network topology in Thermosynechococcus vulcanus 1.9 °A. Starting from the Förster theory, we construct a network of EET pathways. For an analysis of the network structure, we calculate common network-structural measures like betweenness centrality, eigenvector centrality and weighted clustering. These measures can reflect the role of individual pigments in the EET network. In our work, we found that some well-known properties were reproduced by the network analysis of the simplified network, which means that the topology of the network encodes functionally relevant information. For example, from the network structural analysis, we can infer that most of the chlorophyll molecules (clorophylls) in the pigment-protein complex CP47 have heightened probability to transfer energy compared with other chlorophylls. We also see that the active branch chlorophylls in the reaction center are characterized by a high eigenvector centrality, a high betweenness centrality and a low weighted clustering coefficient. This is indicative of functionally important vertices.

This is a preview of subscription content, access via your institution.


  1. [1]

    R. E. Blankenship, Molecular mechanisms of photosynthesis (Hoboken NJ, Blackwell Science, 1999).

    Google Scholar 

  2. [2]

    N. P. Pawlowicz, M. L. Groot, I. H. M. van Stokkum, J. Breton and R. van Grondelle R, Biophys. J. 93, 2732 (2007).

    ADS  Article  Google Scholar 

  3. [3]

    G. Raszewski and T. Renger, J. Am. Chem. Soc. 130, 4431 (2008).

    Article  Google Scholar 

  4. [4]

    V. I. Novoderezhkin, E. Romero, J. P. Dekker and R. van Grondelle, Chem. Phys. Chem. 12, 691 (2011).

    Article  Google Scholar 

  5. [5]

    J. Adolphs, F. Müh, M.-A. Madjet, M. S. am Busch and T. Renger, J. Am. Chem. Soc. 132, 3331 (2010).

    Article  Google Scholar 

  6. [6]

    M. Byrdin, P. Jordan, N. Krauss, P. Fromme, D. Stehlik and E. Schlodder, Biophys. J. 83, 433 (2002).

    ADS  Article  Google Scholar 

  7. [7]

    A. Zouni et al., Nature 409, 739 (2001).

    ADS  Article  Google Scholar 

  8. [8]

    K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber and S. Iwata, Science 303, 1831 (2004).

    ADS  Article  Google Scholar 

  9. [9]

    A. Guskov et al., Nature Struct. Mol. Biol. 16, 334 (2009).

    Article  Google Scholar 

  10. [10]

    N. Kamiya and J. R. Shen, Proc. Natl. Acad. Sci. USA 100, 98 (2003).

    ADS  Article  Google Scholar 

  11. [11]

    Y. Umena et al., Nature 473, 55 (2011).

    ADS  Article  Google Scholar 

  12. [12]

    M. K. Sener et al., J. Phys. Chem. B 106, 7948 (2002).

    Article  Google Scholar 

  13. [13]

    M. K. Sener, C. Jolley, A. Ben-Shem, P. Fromme, N. Nelson, R. Croce and K. Schulten, Biophys. J. 89, 1630 (2005).

    Article  Google Scholar 

  14. [14]

    M. E. J. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010).

    Google Scholar 

  15. [15]

    E. Estrada, The structure of complex networks: Theory and applications (Oxford University Press, Oxford, 2011).

    Google Scholar 

  16. [16]

    T. Renger, R.A. Marcus. J. Phys. Chem. B. 106, 1809 (2002)

    Article  Google Scholar 

  17. [17]

    H. Van Amerongen, L. Valkunas and R. van Grondelle, Photosynthetic Excitons (World Scientific, Singapore, 2000), p. 77.

    Google Scholar 

  18. [18]

    Y. Mino and G. R. Fleming, Chem. Phys. 275, 355 (2002).

    ADS  Article  Google Scholar 

  19. [19]

    G. Raszewski, W. Saenger and T. Renger, Biophys. J. 88, 9868 (2005).

    Google Scholar 

  20. [20]

    G. Raszewski and T. Renger, J. Am. Chem. Soc. 130, 4431 (2008).

    Article  Google Scholar 

  21. [21]

    Y. Miloslavina, M. Szczepaniak, G. Müller, J. Sander, M. Nowaczyk, M. Rögner and A. R. Holzwarth, Biochem. 45, 2436 (2006).

    Article  Google Scholar 

  22. [22]

    N. P. Pawlowicz, M. L. Groot, I. H. M. van Stokkum, J. Breton and R. van Grondelle, Biophys. J. 93, 2732 (2007).

    ADS  Article  Google Scholar 

  23. [23]

    T. Cardona, A. Sedoud, C. Nicholas and A. W. Rutherford, Biochim. Biophys. Acta. 1817, 26 (2012).

    Article  Google Scholar 

  24. [24]

    I. V. Shelaev et al., J. Photoch. Photobio. B 104, 44 (2011).

    Article  Google Scholar 

  25. [25]

    G. Sabidussi, Psychometrika 31, 581 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  26. [26]

    L. C. Freeman, Sociometry 40, 35 (1977).

    Article  Google Scholar 

  27. [27]

    J. Saramäki, M. Kivelä, J. P. Onnela, K. Kaski and J. Kertész, Phys. Rev. E 75, 027105 (2007).

    ADS  Article  Google Scholar 

  28. [28]

    E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai and A.-L. Barabási, Science 297, 1551 (2002).

    ADS  Article  Google Scholar 

  29. [29]

    L. Huang, N. Ponomarenko, G. P. Wiederrecht and D. M. Tiede, Proc. Natl. Acad. Sci. USA 109, 4851 (2012).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Petter Holme.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, E., Holme, P. Network characteristics of individual pigments in cyanobacterial photosystem II core complexes. Journal of the Korean Physical Society 63, 2255–2261 (2013).

Download citation


  • Network theory
  • Photosynthesis
  • Excitation transfer