Skip to main content
Log in

Influence of oxygen annealing conditions on the electronic structure, dielectric function, and charge conduction of gallium-ferrite thin films

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Gallium-ferrite thin films were studied to investigate the effects of the oxygen annealing conditions on the electrical properties. Ga0.8Fe1.2O3−δ thin films were prepared by using a sol-gel method under different oxygen partial pressures. The structural properties of the films were studied by using X-ray diffraction. X-ray photoemission spectra of the core-levels of Ga, Fe, and O in the films were examined. The dielectric functions of the films were measured at energies from 0.73 to 6.45 eV by using spectroscopic ellipsometry. The Fe valence was changed by the oxygen vacancies, which are dominantly responsible for the dielectric function and the charge conduction. Remarkably, the leakage current of the films annealed under intermediate oxygen atmospheric conditions showed the lowest values. In the film, the oxygen vacancies, were indirectly estimated by using the ratio of Fe2+ to Fe3+, are important to reduce the leakage current, which can be explained by using a space-charge-limited model with shallow traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ramesh and N. A. Spaldin, Nature Mater. 6, 21 (2007).

    Article  ADS  Google Scholar 

  2. S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh and R. C. Dynes, Nature Mater. 9, 756 (2010).

    Article  ADS  Google Scholar 

  3. S. H. Baek, H. W. Jang, C. M. Folkman, Y. L. Li, B. Winchester, J. X. Zhang, Q. He, Y. H. Chu, C. T. Nelson, M. S. Rzchowski, X. Q. Pan, R. Ramesh, L. Q. Chen and C. B. Eom, Nature Mater. 9, 309 (2010).

    Article  ADS  Google Scholar 

  4. M. Bibes and A. Barthélémy, Nature Mater. 7, 425 (2008).

    Article  ADS  Google Scholar 

  5. G. T. Rado, Phys. Rev. Lett. 13, 335 (1964).

    Article  ADS  Google Scholar 

  6. M. Trassin, N. Viart, G. Versini, S. Barre, G. Pourroy, J. Lee, W. Jo, K. Dumesnil, C. Dufour and S. Robert, J. Mater. Chem. 19, 8876 (2009).

    Article  Google Scholar 

  7. C. H. Nowlin and R. V. Jones, J. Appl. Phys. 34, 1262 (1963).

    Article  ADS  Google Scholar 

  8. Daniel Stoeffler, J. Phys.: Condens. Matter 24, 185502 (2012).

    ADS  Google Scholar 

  9. Z. H. Sun, Y. L. Zhou, S. Y. Dai, L. Z. Cao and Z. H. Chen, Appl. Phys. A 91, 97 (2008).

    Article  ADS  Google Scholar 

  10. V. B. Naik and R. Mahendira, J. Appl. Phys. 106, 123910 (2009).

    Article  ADS  Google Scholar 

  11. C. Lefevre, R. H. Shin, J. H. Lee, S. H. Oh, F. Roulland, A. Thomasson, E. Autissier, C. Meny, W. Jo and N. Viart, Appl. Phys. Lett. 100, 262904 (2012).

    Article  ADS  Google Scholar 

  12. S. Mukherjee, V. Ranjan, R. Gupta and A. Garg, http://arxiv.org/ftp/arxiv/papers/1107/1107.3623.

  13. T. Arima, D. Higashiyama, Y. Kaneko, J. P. He, T. Goto, S. Miyasaka, T. Kimura, K. Oikawa, T. Kamiyama, R. Kumai and Y. Tokura, Phys. Rev. B 70, 064426 (2004).

    Article  ADS  Google Scholar 

  14. T. Ohtsuki, A. Chainani, R. Eguchi, M. Matsunami, Y. Takata, M. Taguchi, Y. Nishino, K. Tamasaku, M. Yabashi, T. Ishikawa, M. Oura, Y. Senda, H. Ohashi and S. Shin, Phys. Rev. Lett. 106, 047602 (2011).

    Article  ADS  Google Scholar 

  15. R. Perez-Casero, J. Perriere, A. Gutierrez-Llorente, D. Defourneau, E. Millon, W. Seiler and L. Soriano, Phys. Rev. B 75, 165317 (2007).

    Article  ADS  Google Scholar 

  16. L. Armelao, M. Bettinelli, M. Casarin, G. Granozzi, E. Tondello and A. Vittadini, J. Phys. D: Condensed Matter 7, L299 (1995).

    ADS  Google Scholar 

  17. Z. H. Sun, S. Dai, Y. L. Zhou, L. Z. Cao and Z. H. Chen, Thin Solid Films 516, 7433 (2008).

    Article  ADS  Google Scholar 

  18. Y. Wang and J. Wang, J. Phys. D: Appl. Phys. 42, 162001 (2009).

    Article  ADS  Google Scholar 

  19. Y. Wang, Q.-H. Jiang, H.-C He and C.-W. Nan, Appl. Phys. Lett. 88, 142503 (2006).

    Article  ADS  Google Scholar 

  20. S. G. Choi, C. Lefèèvre, F. Roulland, C. Mény, N. Viart. B. To, D. E. Shafer, R. H. Shin, J. H. Lee and W. Jo, J. Vac. Sci. Technol. B 30, 041204 (2012).

    Article  Google Scholar 

  21. A. Thomasson, F. Ibrahim, C. Lefevre, E. Autissier, F. Roulland, C. Meny, C. Leuvrey, S. Choi, W. Jo, O. Cregut, G. Versini, S. Barre, M. Alouania and N. Viart, R. Soc. Chem. Adv. 3, 3124 (2013).

    Google Scholar 

  22. A. Rose, Phys. Rev. 97, 1538 (1955).

    Article  ADS  Google Scholar 

  23. D. R. Lamb, Electric Conduction Mechanisms in Thin Insulating Films (Methuen, London, 1967).

    Google Scholar 

  24. C. Hamann, H. Burghardt and T. Frauenheim, Electrical Conduction Mechanisms in Solids (VEB Deutscher Verlag der Wissenschaften, Berlin, 1988).

    Google Scholar 

  25. J. M. Luo, S. P. Lin, Y. Zheng and B. Wang, Appl. Phys. Lett. 101, 062902 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, R.H., Oh, S.H., Lee, J.H. et al. Influence of oxygen annealing conditions on the electronic structure, dielectric function, and charge conduction of gallium-ferrite thin films. Journal of the Korean Physical Society 63, 2179–2184 (2013). https://doi.org/10.3938/jkps.63.2179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.2179

Keywords

Navigation