Journal of the Korean Physical Society

, Volume 63, Issue 11, pp 2158–2164 | Cite as

Systematic and consistent ferromagnetism in InMnP:Zn bilayers for various Mn concentrations and annealing temperatures

  • Yoon Shon
  • Im Taek Yoon
  • Sejoon Lee
  • Y. H. Kwon
  • Chong S. Yoon
  • C. S. Park
  • Cheol Jin Lee
  • Dong Jin Lee
  • H. S. Kim
  • T. W. Kang
Article
  • 65 Downloads

Abstract

The p-type InP:Zn epilayers were prepared by using metal-organic chemical vapor deposition, and Mn was subsequently deposited onto the epilayer by using molecular beam epitaxy. The p-type InMnP:Zn epilayers were annealed at relatively low temperatures of 200–350 °C and contained no secondary phases such as InMn, MnP, and MnO2, as verified by x-ray diffraction. However, minute presence of MnO2 was confirmed using transmission electron microscopy, which agreed with the magnetic properties measured by using a superconducting quantum interference device (SQUID). From the SQUID measurements, consistent and systematic ferromagnetic properties with clear ferromagnetic hysteresis loops were observed. The Curie temperature, TC, which persisted up to ∼ 180 K, was recorded depending on the Mn concentrations and annealing temperature. These results indicate that the ferromagnetic semiconductor InMnP:Zn can be fabricated at a very low annealing temperature without forming ferromagnetic precipitates except for MnO2.

Keywords

Semiconductors Chemical vapor deposition (CVD) Molecular beam epitaxy (MBE) InP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science 287, 1019 (2000).ADSCrossRefGoogle Scholar
  2. [2]
    L. Xue, Z. S. Wu, C. Ge and X. D. Zhang, Mater. Chem. Phys. 138, 124 (2013).CrossRefGoogle Scholar
  3. [3]
    G. Hollinger, D. Gallet, M. Gendry, M. P. Besland and J. Joseph, Appl. Phys. Lett. 59, 1617 (1991).ADSCrossRefGoogle Scholar
  4. [4]
    K. Vaccaro, H. M. Dauplaise, A. Davis, S. M. Spaziani and J. P. Lorenzo, Appl. Phys. Lett. 67, 527 (1995).ADSCrossRefGoogle Scholar
  5. [5]
    H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).ADSCrossRefGoogle Scholar
  6. [6]
    Y. Shon, W. C. Lee, Y. S. Park, Y. H. Kwon, S. J. Lee, K. J. Chung, H. S. Kim, D. Y. Kim, D. J. Fu, T. W. Kang, X. J. Fan, Y. J. Park and H. T. Oh, Appl. Phys. Lett. 84, 2310 (2004).ADSCrossRefGoogle Scholar
  7. [7]
    Y. Shon, S. J. Lee, H. C. Jeon, S.-W. Lee, D. Y. Kim, T. W. Kang, E. K. Kim, D. J. Fu, C. S. Yoon and C. K. Kim, Appl. Phys. Lett. 88, 232511 (2006).ADSCrossRefGoogle Scholar
  8. [8]
    M. Pritovsek, A. Philippou, B. Rahmer and W. Richter, J. Cryst. Growth 310, 4046 (2008).ADSCrossRefGoogle Scholar
  9. [9]
    T. M. Schmidt, Phys. Rev. B 77, 085325 (2008).ADSCrossRefGoogle Scholar
  10. [10]
    I. G. Bucsa, R. W. Cochrane and S. Roorda, J. Appl. Phys. 106, 013914 (2009).ADSCrossRefGoogle Scholar
  11. [11]
    T. Dietl, H. Ohno and F. Matsukura, Phys. Rev. B 63, 195205 (2001).ADSCrossRefGoogle Scholar
  12. [12]
    K. J. Bachmann, E. Buechler, B. I. Miller, J. H. McFee and F. A. Thiel, J. Cryst. Growth 39, 137 (1997).ADSCrossRefGoogle Scholar
  13. [13]
    T. Hayashi, Y. Hashimoto, S. Katsumoto and Y. Iye, Appl. Phys. Lett. 78, 1691 (2001); S. J. Potashnik, K. C. Ku, S. H. Chun, J. J. Berry, N. Samarth and P. Schiffer, Appl. Phys. Lett. 79, 1495 (2001).ADSCrossRefGoogle Scholar
  14. [14]
    P. Poddar, Y. Sahoo, H. Srikanth and P. N. Prasad, Appl. Phys. Lett. 87, 062506 (2005).ADSCrossRefGoogle Scholar
  15. [15]
    K. Zdansky, P. Hlidek and L. Pekarek, Phys. Stat. Solidi A 195, 74 (2003).ADSCrossRefGoogle Scholar
  16. [16]
    H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999).ADSCrossRefGoogle Scholar
  17. [17]
    S. J. Pearton, U. K. Chakrabarti, C. R. Abernathy and W. S. Hobson, Appl. Phys. Lett. 55, 2014 (1989).ADSCrossRefGoogle Scholar
  18. [18]
    J. Kreissl, W. Ulrici, M. El-Metoui, A.-M. Vasson, A. Vasson and A. Gavaix, Phys. Rev. B 54, 10508 (1996).ADSCrossRefGoogle Scholar
  19. [19]
    J. Schneider, U. Kaufmann, W. Wilkening, M. Baeumler and F. Kohl, Phys. Rev. Lett. 59, 240 (1987).ADSCrossRefGoogle Scholar
  20. [20]
    J. Szczytko, A. Twardowski, K. Swiatek, M. Palczewska, M. Tanaka, T. Hayashi and K. Ando, Phys. Rev. B 60, 8304 (1999).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  • Yoon Shon
    • 1
  • Im Taek Yoon
    • 1
  • Sejoon Lee
    • 1
  • Y. H. Kwon
    • 1
  • Chong S. Yoon
    • 2
  • C. S. Park
    • 3
  • Cheol Jin Lee
    • 3
  • Dong Jin Lee
    • 4
  • H. S. Kim
    • 4
  • T. W. Kang
    • 4
  1. 1.Quantum-functional Semiconductor Research CenterDongguk UniversitySeoulKorea
  2. 2.Department of Materials Science and EngineeringHanyang UniversitySeoulKorea
  3. 3.School of Electrical EngineeringKorea UniversitySeoulKorea
  4. 4.Department of PhysicsDongguk UniversitySeoulKorea

Personalised recommendations