Skip to main content
Log in

Higher-order corrections to the Korteweg-de Vries Solitons in general plasmas

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A fully relativistic multi-component plasma is considered as a template system for generic plasmas, and a reductive perturbation analysis is applied to the system up to the second and the third order to obtain partial differential equations that describe the evolution of the first-order (ϕ 1) and the second-order (ϕ 2) electrostatic potential waves. The secular-free one-soliton solution of the derived equations is obtained by using Kodama and Taniuti’s method [J. Phys. Soc. Jpn. 45, 29898 (1978)]. The results of present paper are generic in the sense that they are independent of any specificity of the parameters of the physical system because they are derived without making any restrictive assumptions on the system parameters. The presented results are applicable to any kind of multi-component plasma system because all constituent species are treated on equal mathematical footings throughout the analyses until the final specification is made for the system parameters. The algebraic results are so general that they can even be applied to nonrelativistic plasmas when appropriate nonrelativistic approximations are made to the final expressions. Thus, the presented result can be considered as a template for the one-soliton solution that can used for a large class of different plasma systems. To demonstrate the utility of the template, we specialize the generic results to a relativistically hot electron-positron pair plasma where each species has a different temperature. The general result is also applied to a three-component plasma composed of a relativistically hot electron-positron pair plasma with small fraction of ions. The third order corrections to the KdV solitons of the examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Leblond J. Phys. B: At. Mol. Opt. Phys. 41 043001 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  2. C. Gardner, J. Greene, M. Kruskal and R. Miura, Phys. Rev. Lett. 19, 1095 (1967).

    Article  ADS  Google Scholar 

  3. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).

    Article  ADS  Google Scholar 

  4. R. Taylor, D. Baker and H. Ikezi, Phys. Rev. Lett. 25, 11 (1970).

    Article  ADS  Google Scholar 

  5. H. Ikezi, Phys. Fluids 16, 1668 (1973).

    Article  ADS  Google Scholar 

  6. G. Ludwig, J. Ferreira and Y. Nakamura, Phys. Rev. Lett. 52, 275 (1984).

    Article  ADS  Google Scholar 

  7. G. Das, S. Paul and B. Karmakar, Phys. Fluids 29, 2192 (1986).

    Article  ADS  MATH  Google Scholar 

  8. M. Mishira and R. Chhabra, Phys. Plasmas 3, 4446 (1996).

    Article  ADS  Google Scholar 

  9. T. Gill, P. Bala, H. Kaur, N. Saini, S. Bansal and J. Kaur, Eur. Phys. J. D 31, 91 (2004).

    Article  ADS  Google Scholar 

  10. F. Sayed, M. Haider, A. Mamun, P. Shukla, B. Eliasson and N. Adhikary, Phys. Plasmas 15, 063701 (2008).

    Article  ADS  Google Scholar 

  11. H. Pakzad, Astrophys. Space Sci. 331, 269 (2011).

    Article  ADS  Google Scholar 

  12. Y. Ichikawa, T. Mitsuhashi and K. Konno, J. Phys. Soc. Japan 41, 1382 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  13. Y. Kodama and T. Taniuti, J. Phys. Soc. Japan 45, 298 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. H. Nayfeh, Perturbation Methods (Wiley-VCH, Weinheim, 2004), Chaps. 3 and 5.

    Google Scholar 

  15. R. Tiwari, A. Kaushik and M. Mishra, Phys. Lett. A 365, 335 (2007).

    Article  ADS  Google Scholar 

  16. R. Tiwari and M. Mishra, Phys. Plasmas 13, 062112 (2006).

    Article  ADS  Google Scholar 

  17. P. Chatterjee, G. Mondal, K. Roy, S. Muniandy and S. Yap, Phys. Plasmas 16, 072102 (2009).

    Article  ADS  Google Scholar 

  18. A. Esfandyari-Kalejahi, M. Akbari-Moghanjoughi and B. Haddadpour-Khiaban, Phys. Plasmas 16, 102302 (2009).

    Article  ADS  Google Scholar 

  19. T. Gill, P. Bala and H. Kaur, Phys. Plasmas 15, 122309 (2008).

    Article  ADS  Google Scholar 

  20. S. Weinberg, Gravitation and Cosmology (Wikey, New York, 1972), p. 49.

    Google Scholar 

  21. H. Schamel and A. Luque, Space Sci. Rev. 121, 313 (2005).

    Article  ADS  Google Scholar 

  22. Y. Omura, H. Kojima and H. Matsumoto, Geophys. Res. Lett, 21, 2943 (1994).

    Article  ADS  Google Scholar 

  23. J. MacFadden, C. Carlson, R. Ergun, F. Mozer, L. Muschietti, I. Roth and E. Moebius, Geophys. Res. Lett. 108, 8018 (2003).

    Article  Google Scholar 

  24. M. Temerin, K. Cerny, W. Lotko and F. Moser, Phys. Rev. Lett. 48, 1175 (1982).

    Article  ADS  Google Scholar 

  25. M. Lontano, S. Bulanov and J. Koga, Phys. Plasmas 8, 5113 (2001).

    Article  ADS  Google Scholar 

  26. S. Kartal, Tsintsadze and V. Berezhiani, Phys. Rev. E 53, 4225 (1996).

    Article  ADS  Google Scholar 

  27. D. Tskhakaya and H. Eshraghi, Phys. Plasmas 9, 2518 (2002).

    Article  ADS  Google Scholar 

  28. V. Berezhiani and S. Mahajan, Phys. Rev. E 52, 1968 (1995).

    Article  ADS  Google Scholar 

  29. S. Mahajan, Phys. Rev. Lett, 90, 035001 (2003).

    Article  ADS  Google Scholar 

  30. S. Hatchett, C. Brown, T. Cowan, E. Henry, J. Johnson et al., Phys. Plasmas 7, 2076 (2000).

    Article  ADS  Google Scholar 

  31. D. Homan, Y. Kovalev, M. Lister, E. Ros, K. Kellermann, M. Cohen, R. Vermeulen, J. Zensus and M. Kaddler, Astrophys. J. 642, L115 (2006).

    Article  ADS  Google Scholar 

  32. P. Goldreich and W. Julian, Astophys. J. 157, 869 (1969).

    Article  ADS  Google Scholar 

  33. C. Misner, K. Thorne and J. Wheeler, Gravitaion (Freeman, San Fransisco, 1973), p. 763.

    Google Scholar 

  34. N. Lee, Phys. Plasmas 19, 082303 (2012).

    Article  ADS  Google Scholar 

  35. N. Lee, Phys. Plasmas 15, 022307 (2008).

    Article  ADS  Google Scholar 

  36. L. Landau and E. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1975), p. 499.

    Google Scholar 

  37. N. Lee, Phys. Plasmas 15, 082301 (2008).

    Article  ADS  Google Scholar 

  38. L. Landau and E. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1975), p. 502.

    Google Scholar 

  39. F. Michel, Rev. Mod. Phys. 54, 1 (1982); M. Begelman, R. Blandford and M. Reeds Rev. Mod. Phys. 56, 255 (1984).

    Article  ADS  Google Scholar 

  40. A. Dubinov, I. Dubinov and V. Gordienko, Phys. Plasmas 13, 082111 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  41. L. Landau and E. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1975), p. 367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam C. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, N.C. Higher-order corrections to the Korteweg-de Vries Solitons in general plasmas. Journal of the Korean Physical Society 63, 2111–2123 (2013). https://doi.org/10.3938/jkps.63.2111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.2111

Keywords

Navigation