Skip to main content
Log in

Influence of hydrophilic and hydrophobic water-soluble organic carbon fractions on light extinction at an urban site

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Until now, quantitative contributions of hydrophilic and hydrophobic water-soluble organic carbon (WSOC) fractions to aerosol light extinction have not been studied. In this study, concentrations of chemical species in PM2.5 (particulate matter with diameters less than 2.5 µm), including elemental carbon (EC), organic carbon (OC), total WSOC, two fractionated WSOCs, water-soluble inorganic species, and metal species, were measured twice a day between December 27, 2010 and January 20, 2011, at an urban site in Seoul, Korea. A macro-porous XAD7HP resin column was used to separate the liquid extracts into hydrophilic and hydrophobic WSOC (WSOC HPI and WSOC HPO ) fractions. Water-insoluble OC (WIOC), WSOC HPI and WSOC HPO were used to estimate the aerosol light extinction from the original IMPROVE algorithm. Organic mass to organic carbon (OM/OC) ratios of 1.6, 2.0, and 1.8 were applied to the WIOC, WSOC HPI , and WSOC HPO , respectively. Light extinctions for ammonium sulfate, ammonium nitrate, POM (particulate organic matter = WIOM + WSOM HPI + WSOM HPO ), and EC (which is light absorbing) were determined as 38.9 ± 34.0, 64.7 ± 70.6, 69.5 ± 27.7, and 27.1 ± 11.0 Mm−1, respectively, and contributed 15.0% (range: 5.4–25.6), 22.2% (7.1–50.8), 30.8% (13.0–42.3) and 12.0% (5.1–21.3), respectively, to the total light extinction budgets. Light scattering due to the WIOM, WSOM HPI and WSOM HPO were 27.3 ± 13.1, 17.1 ± 8.7, and 24.1 ± 9.9 Mm−1, respectively, and accounted for 12.5, 7.5, and 10.7% of the total light extinction budget. The results indicate WSOC HPO has a greater impact on visibility reduction in wintertime than WSOC HPI at this site. Light scattering by total OC concentration (POM=1.6 × OC) was 62.2 ± 25.1 Mm−1, which was approximately 9.7% lower than the sum of light scattering due to each of the three OC components with different OM/OC ratios. As the relative humidity (RH) increased, light extinction was higher in the water-soluble inorganic components ((NH4)2SO4 and NH4NO3) than in the water-soluble organic fractions. In the IMPROVE algorithm, the hygroscopic growth factor for POM was assumed to be 1 (non-hygroscopic) due to a lack of evidence for water growth by ambient POM. However, the relationships between the RH and light scattering due to WSOM HPI (R2=0.49) and WSOM HPO (R2 = 0.31) suggest that different hygroscopic growth factors should be applied to the hydrophilic and the hydrophobic WSOC fractions. Consequently, additional experimental work is needed to explore hygroscopic growth curves for the two fractionated WSOC components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. C. Malm and J. L. Hand, Atmos. Environ. 41, 3404 (2007).

    ADS  Google Scholar 

  2. K. W. Kim, J. Korean Phys. Soc. 59, 189 (2011).

    Article  Google Scholar 

  3. K. W. Kim, S. S. Park, K. H. Lee and Y. J. Kim, J. Korean Phys. Soc. 62, 186 (2013).

    Article  ADS  Google Scholar 

  4. U. S. Environmental Protection Agency (US EPA), Air quality strategies and standards division visibility and ecosystems protection group, Visibility Monitoring Guidance Document.

  5. B. J. Turpin and H. J. Lim, Aerosol Sci. Technol. 35, 602 (2001).

    Google Scholar 

  6. J. L. Hand and W. C. Malm, Review of the IMPROVE equation for estimating ambient light extinction coefficients (http://vista.cira.colostate.edu/improve/Publications) (2005).

    Google Scholar 

  7. B. R. T. Simoneit, M. Kobayashi, M. Mochida, K. Kawamura, M. Lee, H. J. Lim, B. J. Turpin and Y. Komazaki, J. Geophys. Res. 109, D19S10 (2004).

    ADS  Google Scholar 

  8. S. S. Park and S. Y. Cho, Atmos. Environ. 45, 60 (2011).

    Article  ADS  Google Scholar 

  9. S. Ruellan and H. Cachier, Atmos. Environ. 35, 453 (2001).

    Article  ADS  Google Scholar 

  10. S. S. Park, S. Y. Cho, K.W. Kim, K. H. Lee and K. Chung, Atmos. Environ. 55, 64 (2012).

    Article  ADS  Google Scholar 

  11. M. Kanakidou et al., Atmos. Chem. Phys. 5, 1053 (2005).

    Article  ADS  Google Scholar 

  12. P. Saxena and L. M. Hildemann, J. Atmos. Chem. 24, 57 (1996).

    Article  Google Scholar 

  13. R. J. Weber et al., J. Geophys. Res. 112, D13302 (2007).

    Article  ADS  Google Scholar 

  14. P. Saxena, L. M. Hildemann, P. H. McMurry and J. H. Seinfeld, J. Geophys. Res. 100, 18755 (1995).

    Article  ADS  Google Scholar 

  15. Z. Krivácsy et al., J. Atmos. Chem. 39, 235 (2001).

    Article  Google Scholar 

  16. S. Decesari, M. C. Facchini, E. Matta, S. Fuzzi and E. Tagliavini, J. Geophys. Res. 105, 1481 (2000).

    Article  ADS  Google Scholar 

  17. A. P. Sullivan and R. J. Weber, J. Geophys. Res. 111, D05314 (2006).

    Article  ADS  Google Scholar 

  18. S. S. Park, J. H. Jeong and S. Y. Cho, Asian J. Atmos. Environ. 6, 67 (2012).

    Article  Google Scholar 

  19. S. S. Park, J. H. Kim and J. U. Jeong, J. Environ. Monit. 14, 224 (2012).

    Article  Google Scholar 

  20. K. W. Kim, Y. J. Kim and S. J. Oh, Atmos. Environ. 35, 5157 (2001).

    Article  ADS  Google Scholar 

  21. K. W. Kim, Z. He and Y. J. Kim, J. Geophys. Res. 109, D19S02 (2004).

    ADS  Google Scholar 

  22. K. W. Kim, Atmos. Environ. 41, 3565 (2007).

    Article  ADS  Google Scholar 

  23. L. Yang, X. Zhou, Z. Wang, Y. Zhou, S. Cheng, P. Xu, X. Gao, W. Nie, X. Wang and W. Wang, Atmos. Environ. 55, 506 (2012).

    Article  ADS  Google Scholar 

  24. National Institute of Occupational Safety and Health (NIOSH), Method 5040 Issue 1: Elemental Carbon (Diesel Exhaust) (Cincinnati, OH, 1996).

    Google Scholar 

  25. W. C. Malm, J. F. Sisler, D. Huffman, R. A. Eldred and T. A. Cahill, J. Geophys. Res. 99, 1347 (1994).

    Article  ADS  Google Scholar 

  26. M. Pitchford, W. Malm, B. Schichtel, N. Kumar, D. Lowenthal and J. Hand, J. Air & Waste Manage. Assoc. 57, 1326 (2007).

    Article  Google Scholar 

  27. K. W. Kim, Korean J. Chem. Eng. 30, 1436 (2013).

    Article  Google Scholar 

  28. M. Pitchford and M. Green, J. Air & Waste Manage. Assoc. 47, 136 (1997).

    Article  Google Scholar 

  29. N. Lagrosas, H. Kuze, N. Takeuchi, S. Fukagawa, G. Bagtasa, Y. Yoshii, S. Naito and M. Yabuki, J. Aerosol Sci. 36, 439 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Shik Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.S., Kim, K.W. & Schauer, J.J. Influence of hydrophilic and hydrophobic water-soluble organic carbon fractions on light extinction at an urban site. Journal of the Korean Physical Society 63, 2047–2053 (2013). https://doi.org/10.3938/jkps.63.2047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.2047

Keywords

Navigation