Skip to main content
Log in

Establishment of quality assurance for respiratory-gated radiotherapy using a respiration-simulating phantom and gamma index: Evaluation of accuracy taking into account tumor motion and respiratory cycle

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The purpose of this study is to present a new method of quality assurance (QA) in order to ensure effective evaluation of the accuracy of respiratory-gated radiotherapy (RGR). This would help in quantitatively analyzing the patient’s respiratory cycle and respiration-induced tumor motion and in performing a subsequent comparative analysis of dose distributions, using the gamma-index method, as reproduced in our in-house developed respiration-simulating phantom. Therefore, we designed a respiration-simulating phantom capable of reproducing the patient’s respiratory cycle and respiration-induced tumor motion and evaluated the accuracy of RGR by estimating its pass rates. We applied the gamma index passing criteria of accepted error ranges of 3% and 3 mm for the dose distribution calculated by using the treatment planning system (TPS) and the actual dose distribution of RGR. The pass rate clearly increased inversely to the gating width chosen. When respiration-induced tumor motion was 12 mm or less, pass rates of 85% and above were achieved for the 30–70% respiratory phase, and pass rates of 90% and above were achieved for the 40–60% respiratory phase. However, a respiratory cycle with a very small fluctuation range of pass rates failed to prove reliable in evaluating the accuracy of RGR. Therefore, accurate and reliable outcomes of radiotherapy will be obtainable only by establishing a novel QA system using the respiration-simulating phantom, the gamma-index analysis, and a quantitative analysis of diaphragmatic motion, enabling an indirect measurement of tumor motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. E. Rosenzweig et al., Int. J. Radiat. Oncol. Biol. Phys. 48, 81 (2000).

    Article  Google Scholar 

  2. J. W. Wong, M. B. Sharpe, D. A. Jaffray, V. R. Kini, J. M. Robertson, J. S. Stromberg and A. A. Martinez, Int. J. Radiat. Oncol. Biol. Phys. 44, 911 (1999).

    Article  Google Scholar 

  3. T. Depuydt et al., Radiother. Oncol. 98, 365 (2011).

    Article  Google Scholar 

  4. J. Hanley et al., Int. J. Radiat. Oncol. Biol. Phys. 45, 603 (1999).

    Article  Google Scholar 

  5. T. Aruga et al., Int. J. Radiat. Oncol. Biol. Phys. 48, 465 (2000).

    Article  Google Scholar 

  6. A. M. Allen, K. M. Siracuse, J. A. Hayman and J. M. Balter, Int. J. Radiat. Oncol. Biol. Phys. 58, 1251 (2004).

    Article  Google Scholar 

  7. I. M. Gagné and D. M. Robinson, Med. Phys. 31, 3378 (2004).

    Article  Google Scholar 

  8. R. Werner, J. Ehrhardt, R. Schmidt and H. Handels, Med. Phys. 36, 1500 (2009).

    Article  Google Scholar 

  9. ICRP Publication 112, Internal Commission on Radiological Protection, Ann. ICRP 39 (1999).

    Google Scholar 

  10. D. A. Low, W. B. Harms, S. Mutic and J. A. Purdy, Med. Phys. 25, 656 (1998).

    Article  Google Scholar 

  11. T. Depuydt, A. Van Esch and D. P. Huyskens, Radiother. Oncol. 62, 309 (2002).

    Article  Google Scholar 

  12. M. Stasi, S. Bresciani, A. Miranti, A. Maggio, V. Sapino and P. Gabriele, Med. Phys. 39, 7626 (2012).

    Article  Google Scholar 

  13. S. R. Lee, J. Y. Park, T. S. Suh, H. J. Park, J. W. Lee and W. G. Jung, J. Korean Phys. Soc. 61, 1319 (2012).

    Article  ADS  Google Scholar 

  14. B. De Bari, N. Sellal and F. Mornex, Cancer Radiother. 15, 43 (2011).

    Article  Google Scholar 

  15. R. Onimaru, H. Shirato, M. Fujino, K. Suzuki, K. Yamazaki, M. Nishimura, H. Dosaka-Akita and K. Miyasaka, Int. J. Radiat. Oncol. Biol. Phys. 63, 164 (2005).

    Article  Google Scholar 

  16. H. H. Liu et al., Int. J. Radiat. Oncol. Biol. Phys. 68, 531 (2007).

    Article  Google Scholar 

  17. A. Cardenas, J. Fontenot, K. M. Forster, C. W. Stevens and G. Starkschall, J. Appl. Clin. Med. Phys. 5, 55 (2004).

    Article  Google Scholar 

  18. K. M. Langen and D. T. Jones, Int. J. Radiat. Oncol. Biol. Phys. 50, 265 (2001).

    Article  Google Scholar 

  19. J. M. Balter, K. L. Lam, C. J. McGinn, T. S. Lawrence and R. K. Ten Haken, Int. J. Radiat. Oncol. Biol. Phys. 41, 939 (1998).

    Article  Google Scholar 

  20. Y. Chi, J. Liang, X. Qin and D. Yan, Med. Phys. 39, 1696 (2012).

    Article  Google Scholar 

  21. S. S. Korreman, T. Juhler-Nøttrup and A. L. Boyer, Radiother. Oncol. 86, 61 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JS., Im, IC., Kang, SM. et al. Establishment of quality assurance for respiratory-gated radiotherapy using a respiration-simulating phantom and gamma index: Evaluation of accuracy taking into account tumor motion and respiratory cycle. Journal of the Korean Physical Society 63, 2039–2046 (2013). https://doi.org/10.3938/jkps.63.2039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.2039

Keywords

Navigation