Skip to main content
Log in

Relaxation of slow ions in nematic liquid crystal device

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Ionic motion can crucially affect the performance of liquid crystal devices under an electric field. In this study, the adsorption and the relaxation of slow ions induced by a sufficiently strong DC voltage were observed in a liquid crystal cell using an electro-optical method. After a DC voltage had been applied for a given time, the transient transmission was measured using a fixed AC voltage. Even though the external DC voltage was zero, an effective voltage due to the adsorbed ions existed. We obtained the density and the mobility of ions and compared the results with those obtained using a simple model calculation. The density was in the range of 1015 ∼ 1016/m3 in the bulk and the mobility was in the range of 10−15 ∼ 10−13 m2/Vs. Both varied sensitively with the DC voltage rather than the applied time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Perlmutter, D. Doroski and G. Moddela, Appl. Phys. Lett. 69, 1182 (1996).

    Article  ADS  Google Scholar 

  2. Y. Nakazono, T. Takagi, A. Sawada and O. Naemura, ASID99 (Taiwan, 1999).

    Google Scholar 

  3. G. Barbero, A. K. Zvezdin and L. R. Evangelista, Phys. Rev. E 59, 1846 (1999).

    Article  ADS  Google Scholar 

  4. L. R. Evangelista and G. Barbero, Phys. Rev. E 64, 021101 (2001).

    Article  ADS  Google Scholar 

  5. H. A. Ferreira, F. Batalioto and L. R. Evangelista, Phys. Rev. E 68, 040701 (2003).

    Article  Google Scholar 

  6. M. Scalerandi, P. Pagliusi, G. Cipparrone and G. Barbero, Phys. Rev. E 69, 051708 (2004).

    Article  ADS  Google Scholar 

  7. M. Yamashita and Y. Amemiya, Jpn. J. Appl. Phys. 17, 1513 (1978).

    Article  ADS  Google Scholar 

  8. H. Mada and M. Ryuzaki, Jpn. J. Appl. Phys. 34, L 1134 (1985).

    Article  Google Scholar 

  9. H. Mada and S. Yoshino, Jpn. J. Appl. Phys. 27, L 1361 (1988).

    Article  ADS  Google Scholar 

  10. H. Naito and M. Okuda, Phys. Rev. A 44, R 3434 (1991).

    Article  ADS  Google Scholar 

  11. H. Naito, K. Yoshida, M. Okuda and A. Sugimura, J. Appl. Phys. 73, 1119 (1993).

    Article  ADS  Google Scholar 

  12. A. Sawada, K. Tarumi and S. Naemura, Jpn. J. Appl. Phys. 38, 1418 (1999).

    Article  ADS  Google Scholar 

  13. A. Sawada, A. Manabe and S. Naemura, Jpn. J. Appl. Phys. 40, 220 (2001).

    Article  ADS  Google Scholar 

  14. A. Sawada and S. Naemura, Jpn. J. Appl. Phys. 41, L 195 (2002).

    Article  ADS  Google Scholar 

  15. G. Stojmenovik, K. Neyts, S. Vermael and A. Verschueren, IDRC03 (USA, 2003).

    Google Scholar 

  16. H. Y. Chen, K. X. Yang and W. Lee, Opt. Express 12, 3806 (2004).

    Article  ADS  Google Scholar 

  17. M. Okutan, F. Yakuphanoglu, O. Koysal, M. Durmus and V. Ahsen, Spectrochim. Acta A 67, 531 (2007).

    Article  ADS  Google Scholar 

  18. G. Stojmenovik, Ph. D. Thesis dissertation, Universiteit Gent, 2005.

  19. H. Allinson and H. H. Gleeson, Liq. Cryst. 19, 421 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, Y., Jang, TS. & Kim, JH. Relaxation of slow ions in nematic liquid crystal device. Journal of the Korean Physical Society 63, 2024–2028 (2013). https://doi.org/10.3938/jkps.63.2024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.2024

Keywords

Navigation