Skip to main content
Log in

Quantum-interference-induced magnetization in mesoscopic loop interferometers

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We theoretically investigate quantum interference effects in mesoscopic loop interferometers. In the absence of an Aharonov-Bohm flux, the asymmetry of the arm length of the interferometer can induce a magnetic polarization current circulating along the interferometer loop. We clarify the existing regions of magnetic polarization current in terms of the dimensionless wavevector and a parameter for the asymmetric arm lengths. The magnetic polarization current is found to have a periodic diamond structure that can be characterized by magnetic and non-magnetic diamond zones. The applied magnetic flux develops a concave diamond-shaped non-magnetic region inside the magnetic diamond zones. When the magnetic flux varies across ϕ = (2n+1)π/2, with n being an integer, the magnetic diamond zone becomes a non-magnetic diamond zone and vice versa. In addition, the unique behaviors of the transport current flowing through the interferometer are discussed in association with the magnetic polarization current circulating along the interferometer loop. Finally, the magnetic moments induced at a finite bias are shown to be sufficiently large to be observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for a review, Y. Imry, Introduction to Mesoscopic Physics, 2nd ed. (Oxford University Press, Oxford, 2002); S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, New York, 1995).

    Google Scholar 

  2. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. M. Büttiker, Y. Imry and R. Landauer, Phys. Lett. A 96, 365 (1983).

    Article  ADS  Google Scholar 

  4. L. P. Levy, G. Dolan, J. Dunsmuir and H. Bouchiat, Phys. Rev. Lett. 64, 2074 (1990); V. Chandrasekhar, R. A. Webb, M. J. Brady, M. B. Ketchen, W. J. Gallagher and A. Kleinasser, Phys. Rev. Lett. 67, 3578 (1991); E. M. Q. Jariwala, P. Mohanty, M. B. Ketchen and R. A. Webb, Phys. Rev. Lett. 86, 1594 (2001); W. Rabaud, L. Saminadayar, D. Mailly, K. Hasselbach, A. Benoit and B. Etienne, Phys. Rev. Lett. 86, 3124 (2001); H. Bluhm, N. C. Koshnick, J. A. Bert, M. E. Huber and K. A. Moler, Phys. Rev. Lett. 102, 136802 (2009).

    Article  ADS  Google Scholar 

  5. A. C. Bleszynski-Jayich, W. E. Shanks, B. Peaudecerf, E. Ginossar, F. von Oppen, L. Glazman and J. G. E. Harris, Science 326, 272 (2009).

    Article  ADS  Google Scholar 

  6. D. Mailly, C. Chapelier and A. Benoit, Phys. Rev. Lett. 70, 2020 (1993).

    Article  ADS  Google Scholar 

  7. R. A. Webb, S. Washburn, C. P. Umbach and R. B. Laibowitz, Phys. Rev. Lett. 54, 2696 (1985).

    Article  ADS  Google Scholar 

  8. S. Washburn and R. A. Webb, Rep. Prog. Phys. 55, 1311 (1992).

    Article  ADS  Google Scholar 

  9. A. Fuhrer, S. Lüscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider and M. Bichler, Nature (London) 413, 822 (2001).

    Article  ADS  Google Scholar 

  10. A. M. Jayannavar and P. S. Deo, Phys. Rev. B 51, 10175 (1995).

    Article  ADS  Google Scholar 

  11. Y. H. Su, S. Y. Cho, A. M. Chen and T. Choi, J. Korean Phys. Soc. 57, 138 (2010).

    Article  Google Scholar 

  12. S. Y. Cho, H. T. Wang and T. Choi. J. Korean Phys. Soc. 62, 496 (2013).

    Article  ADS  Google Scholar 

  13. S. Y. Cho, T. Choi and C-M. Ryu, Int. J. Mod. Phys. B 10, 3569 (1996).

    Article  ADS  Google Scholar 

  14. T. P. Pareek, P. S. Deo and A. M. Jayannavar, Phys. Rev. B 52, 14657 (1995).

    Article  ADS  Google Scholar 

  15. A. M. Jayannavar, P. S. Deo and T. P. Pareek, Physica B 212, 261 (1995).

    Article  ADS  Google Scholar 

  16. C. Benjamin, S. K. Joshi, D. Sahoo and A. M. Jayannavar, Mod. Phys. Lett. B 15, 19 (2001).

    Article  ADS  Google Scholar 

  17. C. Benjamin and A. M. Jayannavar, Phys. Rev. B 68, 085325 (2003).

    Article  ADS  Google Scholar 

  18. S. Bandopadhyay, P. S. Deo and A. M. Jayannavar, Phys. Rev. B 70, 075315 (2004).

    Article  ADS  Google Scholar 

  19. T. Choi, C.-M. Ryu and A. M. Jayannavar, Int. J. Mod. Phys. B 12, 2091 (1998).

    Article  ADS  Google Scholar 

  20. T. Choi, C.-M. Ryu and A. M. Jayannavar, arXiv:condmatt/9808245.

  21. S. Y. Cho, R. H. McKentize, K. Kang and C. K. Kim, J. Phys.: Condens. Matter 15, 1147 (2003).

    ADS  Google Scholar 

  22. S. Y. Cho and R. H. McKentize, Phys. Rev. B 71, 045317 (2005).

    Article  ADS  Google Scholar 

  23. H. C. Wu, Y. Guo, X. Y. Chen and B. L. Gu, Phys. Rev. B 68, 125330 (2003).

    Article  ADS  Google Scholar 

  24. Y. T. Zhang, Y. Guo and Y. C. Li, Phys. Rev. B 72, 125334 (2005).

    Article  ADS  Google Scholar 

  25. V. Vargiamidis and H. M. Polatoglou, Phys. Rev. B 74, 235323 (2006).

    Article  ADS  Google Scholar 

  26. J. Yi, J. H. Wei, J. Hong and S. I. Lee, Phys. Rev. B 65, 033305 (2001).

    Article  ADS  Google Scholar 

  27. W. Park and J. Hong, Phys. Rev. B 69, 035319 (2004).

    Article  ADS  Google Scholar 

  28. O. Entin-Wohlman, Y. Imry and A. Aharony, Phys. Rev. Lett. 91, 046802 (2003).

    Article  ADS  Google Scholar 

  29. O. Entin-Wohlman, Y. Imry and A. Aharony, Phys. Rev. B 70, 075301 (2004).

    Article  ADS  Google Scholar 

  30. R. Citro and F. Romeo, Phys. Rev. B 75, 073306 (2007).

    Article  ADS  Google Scholar 

  31. J. B. Xia, Phys. Rev. B 45, 3593 (1992).

    Article  ADS  Google Scholar 

  32. S. Griffith, Trans. Faraday Soc. 49, 345 (1953).

    Article  Google Scholar 

  33. M. Büttiker, Y. Imry and M. Ya. Azbel, Phys. Rev. A 30, 1982 (1984).

    Article  ADS  Google Scholar 

  34. Y. Gefen, Y. Imry and M. Ya. Azbel, Phys. Rev. Lett. 52, 129 (1984).

    Article  ADS  Google Scholar 

  35. Q. Li and C. M. Soukoulis, Phys. Rev. B 33, 7318 (1986).

    Article  ADS  Google Scholar 

  36. D. Takai and K. Ohta, Phys. Rev. B 48, 1537 (1993).

    Article  ADS  Google Scholar 

  37. K. N. Pichugin and A. F. Sadreev, Phys. Rev. B 56, 9662 (1997).

    Article  ADS  Google Scholar 

  38. S. K. Joshi, D. Sahoo and A. M. Jayannavar, Phys. Rev. B 81, 245316 (2001).

    Google Scholar 

  39. P. G. N. de Vegvar, G. Timp, P. M. Mankiewich, R. Behringer and J. Cunningham, Phys. Rev. B 40, 3491 (1989).

    Article  ADS  Google Scholar 

  40. M. Büttiker, Y. Imry and R. Landauer, Phys. Rev. Lett. 57, 1761 (1986).

    Article  Google Scholar 

  41. M. Büttiker, Y. Imry and R. Landauer, Phys. Lett. A 96, 365 (1983).

    Article  ADS  Google Scholar 

  42. W. Porod, Z. A. Shao and C. S. Lent, Phys. Rev. B 48, 8495 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Young Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H.T., Cho, S.Y. & Choi, T. Quantum-interference-induced magnetization in mesoscopic loop interferometers. Journal of the Korean Physical Society 63, 1984–1996 (2013). https://doi.org/10.3938/jkps.63.1984

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.1984

Keywords

Navigation