Skip to main content
Log in

Demixing and surface-induced population inversion of a binary Gaussian mixture in nanopores

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigate the demixing and the surface-induced population inversion of a binary Gaussian mixture, which exhibits the fluid-fluid demixing transition of the bulk system, in a nanopore. The result shows that the population inversion is the typical shift of the first-order fluid-fluid demixing transition due to the confinement effect. The population inversion line is affected by the crossinteraction between unlike species σ 12, the mole fraction of species x 2, and the slit width H. At a low cross-interaction between unlike species, the population inversion line for x 2 < x c is shifted toward a lower density with decreasing the slit width, where x c is the critical consolute point at the bulk phase, while the population inversion is not observed for x 2 > x c . At a high cross-interaction, for x 2 < x c , the population inversion line is shifted toward a higher density with decreasing slit width. In this case, the population inversion line is found at a higher density compared with the bulk mixing transition line because species 1 in a nanopore is favored. However, for x 2 > x c , it is shifted toward a lower density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Jagannathan and A. Yethiraj, J. Chem. Phys. 118, 7907 (2003).

    Article  ADS  Google Scholar 

  2. Y. Duda, E. Vakarin and J. Alejandre, J. Coll. Int. Sci. 258, 10 (2003).

    Article  Google Scholar 

  3. M. Schmidt, J. Phys.: Condens. Matt. 16, L351 (2004).

    ADS  Google Scholar 

  4. A. J. Archer, C. N. Likos and R. Evans, J. Phys.: Condens. Matt. 16, L297 (2004).

    ADS  Google Scholar 

  5. W. T. Góźdź, J. Chem. Phys. 122, 074505 (2005).

    Article  ADS  Google Scholar 

  6. I. O. Götze, A. J. Archer and C. N. Likos, J. Chem. Phys. 124, 084901 (2006).

    Article  ADS  Google Scholar 

  7. J. M. Brader and R. L. C. Vink, J. Phys.: Condens. Matter. 19, 036101 (2007).

    ADS  Google Scholar 

  8. M. Schmidt, Phys. Rev. E 76, 031202 (2007); A. Santos, A. Phys. Rev. E 76, 062201 (2007).

    Article  ADS  Google Scholar 

  9. S. D. Overduin and C. N. Likos, Europhys. Lett. 85, 26003 (2009).

    Article  ADS  Google Scholar 

  10. M. Carta, D. Pini, A. Parola and L. Reatto, J. Phys.: Condens. Matt. 24, 284106 (2012).

    Google Scholar 

  11. A. J. Archer and R. Evans, Phys. Rev. E 64, 041501 (2001).

    Article  ADS  Google Scholar 

  12. Y. Duda, E. Vakarin and J. Alejandre, J. Colloid Interface Sci. 258, 10 (2003).

    Article  Google Scholar 

  13. M. Schmidt, A. Fortini and D. M. Dijkstra, J. Phys.: Condens. Matt. 15, S3411 (2003).

    ADS  Google Scholar 

  14. P. Hopkins, A. J. Archer and R. Evans, J. Chem. Phys. 129, 214709 (2008).

    Article  ADS  Google Scholar 

  15. F. Jiménez-Ángeles, Y. Duda, G. Odriozola and M. Lozada-Cassou, J. Phys. Chem. C 112, 18028 (2008).

    Article  Google Scholar 

  16. S.-C. Kim, S.-H. Suh and B.-S. Seong, J. Korean Phys. Soc. 54, 660 (2009).

    Article  ADS  Google Scholar 

  17. A. Ayadim and S. Amokrane, J. Phys. Chem. B 114, 16824 (2010).

    Article  Google Scholar 

  18. C. Brunet, J. G. Malherbe and S. Amokrane, J. Chem. Phys. 131, 221103 (2009); Phys. Rev. E 82, 021504 (2010); Mol. Phys. 110, 1161 (2012).

    Article  ADS  Google Scholar 

  19. P. Hopkins and M. Schmidt, J. Phys.: Condens. Matt. 22, 325108 (2010); Phys. Rev. E 83, 050602(R) (2011).

    Google Scholar 

  20. A. Taghizadeh and E. Keshavarzi, J. Phys. Chem. B 115, 3551 (2011).

    Article  Google Scholar 

  21. M. Camargo and C. N. Likos, Mol. Phys. 109, 1121 (2011).

    Article  ADS  Google Scholar 

  22. E.-Y. Kim, S.-C. Kim and B.-S. Seong, J. Phys. Chem. B 116, 3180 (2012).

    Article  Google Scholar 

  23. C. N. Likos, A. Lang, M. Watzlawek and H. Löwen, Phys. Rev. E 63, 031206 (2001).

    Article  ADS  Google Scholar 

  24. S. van Teeffelen, A. J. Moreno and C. N. Likos, Soft Matter. 5, 1024 (2009).

    Article  ADS  Google Scholar 

  25. R. Evans, Adv. Phys. 28, 143 (1979); C. N. Likos, Phys. Rep. 348, 267 (2001).

    Article  ADS  Google Scholar 

  26. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 3rd ed. (Academic, London, 2006).

    Google Scholar 

  27. C. N. Likos, B. M. Mladek, D. Gottwald and G. Kahl, J. Chem. Phys. 126, 224502 (2007).

    Article  ADS  Google Scholar 

  28. J. S. Rowlinson, Liquids and Liquid Mixtures (Butterworths, London, 1959).

    Google Scholar 

  29. E.-Y. Kim, S.-C. Kim and S.-H. Suh, Phys. Rev. E 85, 051203 (2012); S.-C. Kim, S.-H. Suh and B.-S. Seong, J. Chem. Phys. 137, 114703 (2012).

    Article  ADS  Google Scholar 

  30. K. Bucior, A. Patrykiejew, O. Pizio and A. Sokolowski, J. Colloid Interface Sci. 259, 209 (2003).

    Article  Google Scholar 

  31. A. Patrykiejew, O. Pizio, S. Sokolowski and Z. Sokolowska, Phy. Rev. E 69, 061605 (2004); B. Peng and Y.-X. Yu, J. Phys. Chem. B 112, 15407 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Chul Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, EY., Kim, SC. Demixing and surface-induced population inversion of a binary Gaussian mixture in nanopores. Journal of the Korean Physical Society 63, 1968–1974 (2013). https://doi.org/10.3938/jkps.63.1968

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.1968

Keywords

Navigation