Skip to main content
Log in

Spectral changes of a radial Gaussian Schell-model beam array propagating in non-Kolmogorov turbulence

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The Spectral characteristics of a radial Gaussian Schell-model (GSM) beam array propagating in non-Kolmogorov turbulence are investigated theoretically. The spectrum of the GSM beam array is shown to be greatly influenced by both the source and the non-Kolmogorov parameters. The effects of the propagation distance, the spatial coherence of the source, the ring radius and the beam number of the array beam, the generalized exponent, and the inner scale parameters of non-Kolmogorov turbulence on the spectrum are studied in detail. The results show that two identical spectral maxima exist for the normalized on-axis spectrum and a rapid transition in spectrum can occur when the above-mentioned parameters have specific critical values. The effects of these parameters on the relative spectral shift are also studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Strohbehn, Laser Beam Propagation in the Atmosphere (Springer-Verlag, New York, 1978).

    Book  Google Scholar 

  2. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, second ed. (SPIE Press, Bellingham, 2005).

    Book  Google Scholar 

  3. H. C. Kandpal, J. S. Vaishya and K. C. Joshi, Opt. Commun. 73, 169 (1989).

    Article  ADS  Google Scholar 

  4. E. Wolf, Phys. Rev. Lett. 56, 1370 (1986).

    Article  ADS  Google Scholar 

  5. E. Wolf, Nature 326, 363 (1987).

    Article  ADS  Google Scholar 

  6. E. Wolf, Opt. Commun. 621, 2 (1987).

    Google Scholar 

  7. O. Korotkova, J. Pu and E. Wolf, J. Mod. Opt. 55, 1199 (2008).

    Article  MATH  Google Scholar 

  8. E. Wolf and D. F. V James, Rep. Prog. Phys. 59, 771 (1996).

    Article  ADS  Google Scholar 

  9. G. P. Agrawal and A. Gamliel, Opt. Commun. 78, 1 (1990).

    Article  ADS  Google Scholar 

  10. C. Palma and G. Cincotti, J. Opt. Soc. Am. A 14, 1885 (1997).

    Article  ADS  Google Scholar 

  11. Y. Cai and Q. Lin, Opt. Commun. 204, 17 (2002).

    Article  ADS  Google Scholar 

  12. H. Roychowdhury and E. Wolf, Opt. Commun. 241, 11 (2004).

    Article  ADS  Google Scholar 

  13. L. Pan and B. Zhang, Opt. Commun. 283, 2193 (2010).

    Article  ADS  Google Scholar 

  14. H. T. Eyyuboglu, Y. Cai and Y. Baykal, J. Opt. A 10, 015005-1 (2008).

    Article  Google Scholar 

  15. G. Gbur and E. Wolf, J. Opt. Soc. Am. A 19, 1592 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Salem, T. Shirai, A. Dogariu and E. Wolf, Opt. Commun. 216, 261 (2003).

    Article  ADS  Google Scholar 

  17. J. C. Ricklin and F. M. Davidson, J. Opt. Soc. Am. A 20, 856 (2003).

    Article  ADS  Google Scholar 

  18. T. Shirai, A. Dogariu and E. Wolf, J. Opt. Soc.Am. A 20, 1094 (2003).

    Article  ADS  Google Scholar 

  19. X. Ji, E. Zhang and B. Lu, Opt. Commun. 259, 1 (2006).

    Article  ADS  Google Scholar 

  20. M. Alavinejad, B. Ghafary and D. Razzaghi, Opt. Commun. 281, 2173 (2008).

    Article  ADS  Google Scholar 

  21. S. S. Chesnokov and S. E. Skipetrov, Opt. Commun. 141, 113 (1997).

    Article  ADS  Google Scholar 

  22. A. Consortini, C. Innocenti, G. Paoli, Opt. Commun. 214, 9 (2002).

    Article  ADS  Google Scholar 

  23. I. Toselli, L. C. Andrews, R. L. Phillips and V. Ferrero, Proc. SPIE 6708, 670803-1 (2007).

    Google Scholar 

  24. I. Toselli, L. C. Andrews, R. L. Philips and V. Ferrero, Opt. Eng. 47, 026003-1 (2008).

    ADS  Google Scholar 

  25. I. Toselli, L. Andrews, R. L. Philips and V. Ferrero, Proc. SPIE 6747, 67470B-1 (2007).

    Article  Google Scholar 

  26. I. Toselli, L. Andrews, R. L. Philips and V. Ferrero, IEEE Trans. Ant. Propag 57, 1783 (2009).

    Article  ADS  Google Scholar 

  27. T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).

    Article  Google Scholar 

  28. S. J. Augst, J. Ranka, T. Y. Fan and A. Sanchez, J. Opt. Soc. Am. B 24, 1707 (2007).

    Article  ADS  Google Scholar 

  29. T. M. Shy et al., Proc. SPIE 7195, 7195M–1 (2009).

    Google Scholar 

  30. X. Li, X. Ji, H. T. Eyyuboglu and Y. Baykal, Appl. Phys. B 98, 557 (2010).

    Article  ADS  Google Scholar 

  31. X. Ji and X. Shao, Opt. Commun. 283, 869 (2010).

    Article  ADS  Google Scholar 

  32. H. Tang and B. Ou, Opt. Laser Tech. 43, 1442 (2011).

    Article  ADS  Google Scholar 

  33. H. Tang, B. Ou, B. Luo, H. Guo and A. Dang, J. Opt. Soc. Am. A 28, 1016 (2011).

    Article  ADS  Google Scholar 

  34. H. T. Eyyuboglu, Y. Baykal and Y. Cai, Appl. Phys. B 91, 265 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Sharifi or Guohua Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharifi, M., Luo, B., Dang, A. et al. Spectral changes of a radial Gaussian Schell-model beam array propagating in non-Kolmogorov turbulence. Journal of the Korean Physical Society 63, 1925–1931 (2013). https://doi.org/10.3938/jkps.63.1925

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.1925

Keywords

Navigation