Skip to main content
Log in

Noninteracting classical spins coupled to a heat bath of one-dimensional classical harmonic oscillators: Exact bath variable average

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A system of noninteracting classical spins coupled to the modes of a chain of one-dimensional classical harmonic oscillators via −S z Σc k x k was investigated to see whether the spin-bath coupling could relax the spins toward equilibrium. We considered two different cases for the initial conditions on the classical harmonic oscillator variables when we took the harmonic oscillator bath variable averages for the total spin components. In the first case, the harmonic oscillators were initially in equilibrium while they did not recognize the presence of the spin, whereas in the second case, the spins were in equilibrium and did recognize the presence of the spin. For the first case, the bath variable averages of the x- and the y-components of the total spin showed that the effective angular velocity transiently slowed down after an initial increase; then, it recovered its initial angular velocity continually. In the second case, the effective angular velocity was fixed. For both cases, the z-component of the total spin vector remained constant. If the x- and the y-components of the single spins were randomly distributed, we would get equilibrium values. For the z-components of single spins, unless they are at equilibrium from the beginning, they do not attain equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Rubin, J. Math. Phys. 1, 309 (1960); ibid 2, 373 (1961).

    Article  ADS  Google Scholar 

  2. P. Mazur and E. Montroll, J. Math. Phys. 1, 70 (1960).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. E. Teramoto, Prog. Theor. Phys. 28, 1059 (1962).

    Article  ADS  Google Scholar 

  4. M. A. Huerta and H. S. Robertson, J. Stat. Phys. 1, 393 (1969); ibid 3, 171 (1971); J. Math. Phys. 12, 2305 (1971).

    Article  ADS  Google Scholar 

  5. G. W. Ford, M. Kac and P. Mazur, J. Math. Phys. 6, 504 (1965).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 (1945).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. A. O. Caldeira and A. J. Legget, Phys. Rev. Lett. 46, 211 (1981).

    Article  ADS  Google Scholar 

  8. Vincent Hakim and V. Ambegaokar, Phys. Rev. A 32, 423 (1985).

    Article  ADS  Google Scholar 

  9. R. D. Carlitz and R. Chakrabarti, Phys. Rev. A 35, 3156 (1987).

    Article  ADS  Google Scholar 

  10. G. W. Ford, J. T. Lewis and R. F. O’Connell, Phys. Rev. A 37, 4419 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  11. P. Nielaba, J. L. Lebowitz, H. Spohn and J. L. Vallés, J. Stat. Phys. 55, 745 (1989).

    Article  ADS  Google Scholar 

  12. Hänggi, G.-L. Ingold and P. Talkner, New J. Phys. 10, 115008 (2008).

    Article  Google Scholar 

  13. J. R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Cambridge University Presss, Cambridge, 1999).

    Book  MATH  Google Scholar 

  14. R. Klages, Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics (World Scientific, Singapore, 2007).

    MATH  Google Scholar 

  15. M. E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford University Presss, Oxford, 2010).

    Google Scholar 

  16. S. K. Oh, New Phys: Sae Mulli 57, 16 (2008).

    Google Scholar 

  17. K. -H. Yang and J. O. Hirschfelder, Phy. Rev. A 22, 1814 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  18. N. -N. Huang, H. Cao, T. Yan and F.-R. Xu, J. Nonlinear Math. Phys. 13, 302 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. J. -P. Amiet and M. B. Cibils, J. Phys. A: Math. Gen. 24, 1515 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  20. K. F. Riley, M. P. Hobson and S. J. Bence, Mathematical Methods for Physics and Engineering (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  21. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Sauders College, Philadelphia, 1976).

    Google Scholar 

  22. D. J. Amit and Y. Verbin, Statistical Physics: An Introductory Course (World Scientific, Singapore, 1999).

    Book  MATH  Google Scholar 

  23. F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (Eds.), NIST Handbook of Mathematical Funcions (NIST and Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  24. A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems (Cambridge University Press, Cambridge, 1985); M. C. Mackey, Time’s Arrow: The Origins of Thermodynamic Behavior (Dover, Mineola, 2003).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhk Kun Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, S.K. Noninteracting classical spins coupled to a heat bath of one-dimensional classical harmonic oscillators: Exact bath variable average. Journal of the Korean Physical Society 63, 1892–1900 (2013). https://doi.org/10.3938/jkps.63.1892

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.1892

Keywords

Navigation