Skip to main content
Log in

Multiwavelength erbium-doped fiber laser based on a nonlinear amplified loop mirror with a highly-nonlinear photonic crystal fiber

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A multiwavelength erbium-doped fiber laser based on a nonlinear amplified loop mirror with a highly-nonlinear photonic crystal fiber was proposed and experimentally investigated. The performance of the nonlinear amplified loop mirror was improved by using a single 3-dB coupler and a highly-nonlinear photonic crystal fiber with a length of 100 m. The extinction ratio of the proposed multiwavelength erbium-doped fiber laser was measured to be more than 50 dB. The output power fluctuation was measured to be less than 0.5 dB. The output power difference among multiple peaks was measured to be less than 0.3 dB. A Lyot-Sagnac filter with two segments of polarizationmaintaining photonic-crystal fibers was employed as a multichannel filter, and the wavelength spacing was controlled by changing the polarization states within the Lyot-Sagnac filter. Two different wavelength spacings, 0.6 nm and 0.8 nm, were obtained. The number of channels was also changed: 20 for Δλ = 0.6 nm and 16 for Δλ = 0.8 nm. In addition, a precisely-interleaved switching based on the proposed multiwavelength erbium-doped fiber laser was realized by changing the polarization states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Yoo, S. G. Mun, J. Y. Kim and C. H. Lee, J. Opt. Soc. Korea 16, 101 (2012).

    Article  Google Scholar 

  2. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle and M. Tetu, J. Lightwave Technol. 18, 825 (2000).

    Article  ADS  Google Scholar 

  3. X. Feng, H. Tam and P. K. A. Wai, Opt. Express 14, 8205 (2006).

    Article  ADS  Google Scholar 

  4. J. Tian, Y. Yao, Y. Sun, X. Yu and D. Chen, Opt. Express 17, 15160 (2009).

    Article  ADS  Google Scholar 

  5. T. V. A. Tran, K. Lee, S. B. Lee and Y. G. Han, Opt. Express 16, 1460 (2008).

    Article  ADS  Google Scholar 

  6. Z. Zhang, L. Zhan, K. Xu, J. Wu, Y. Xia and J. Lin, Opt. Express 33, 324 (2008).

    Google Scholar 

  7. Y. G. Han, J. Korean Phys. Soc. 58, 890 (2011).

    Article  Google Scholar 

  8. Y. G. Han, J. Korean Phys. Soc. 55, 1205 (2009).

    Article  ADS  Google Scholar 

  9. M H. Al-Mansoori and M. A. Mahdi, Opt. Express 19, 23988 (2011).

    Article  ADS  Google Scholar 

  10. X. Liu, L. Zhan, S. Luo, Z. Gu, J. Liu, Y. Wang and Q. Shen, Opt. Express 20, 7088 (2012).

    Article  ADS  Google Scholar 

  11. K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss and G. Leuchs, IEEE Photon. Technol. 19, 1858 (2007).

    Article  ADS  Google Scholar 

  12. T. V. A. Tran, K. Lee, S. B. Lee and Y. G. Han, Opt. Express 16, 1460 (2008).

    Article  ADS  Google Scholar 

  13. C. Tu, W. Guo, Y. Li, S. Zhang and F. Lu, Opt. Commun. 280, 448 (2007).

    Article  ADS  Google Scholar 

  14. Y. G. Han, J. Korean Phys. Soc. 57, 1743 (2010).

    Article  ADS  Google Scholar 

  15. X. Feng, H. Y. Tam and P. K. A. Wai, Opt. Express 14, 8205 (2006).

    Article  ADS  Google Scholar 

  16. Y. G. Han, X. Dong, C. S. Kim, M. Y. Jeong and J. H. Lee, Opt. Express 15, 2921 (2007).

    Article  ADS  Google Scholar 

  17. C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung and J. U. Kang, IEEE Photon. Technol. Lett. 15, 269 (2003).

    Article  ADS  Google Scholar 

  18. Y. G. Han, G. Kim, J. H. Lee, S. H. Kim and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Geun Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, YG. Multiwavelength erbium-doped fiber laser based on a nonlinear amplified loop mirror with a highly-nonlinear photonic crystal fiber. Journal of the Korean Physical Society 63, 189–192 (2013). https://doi.org/10.3938/jkps.63.189

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.189

Keywords

Navigation