Skip to main content
Log in

Improved performance of Ag-nanoparticle-decorated TiO2 nanotube arrays in Li-ion batteries

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The present work investigates the electrochemical response of silver nanoparticle (Ag-NP)-decorated TiO2 nanotube (NT) layers as an anode material for a lithium-ion battery. Self-organized nanotube layers with a thickness of approximately 1 µm and a diameter of approximately 100 nm were grown by anodization of Ti in a fluoride-containing aqueous electrolyte. Ag NPs (average particle size of ∼10 nm) were deposited both inside and outside the nanotube geometry in a well-distributed manner through a simple and efficient photocatalytic reduction process. The morphology and the chemical composition of the resulting materials were characterized by using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). Our results show that the TiO2 NT layers decorated with Ag NPs had a superior electrochemical response in terms of charge/discharge capacity, rate capability, cyclic performance and columbic efficiency. The enhanced performance is attributed to the improved electronic and ionic conductivity, obtained by providing highly conductive paths to electrons flowing through a well-distributed Ag NPs deposition on the walls of the highly-oriented NTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. D. Tran, J. H. Feikert, X. Song and K. Kinoshita, J. Electrochem. Soc. 142, 3297 (1995).

    Article  Google Scholar 

  2. D. Aurbach, Y. Ein-Eli, O. Chusid, Y. Carmeli, M. Babai and H. Yamin, J. Electrochem. Soc. 3, 603 (1994).

    Article  Google Scholar 

  3. M. Winter and J. O. Besenhard, Electrochim. Acta 45, 31 (1999).

    Article  Google Scholar 

  4. M. Wagenaker, A. P. M. Kentgens and F. M. Mulder, Nature 418, 397 (2002).

    Article  ADS  Google Scholar 

  5. P. G. Bruce, B. Scrosati and J. M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008).

    Article  Google Scholar 

  6. A. N. Jansen, A. J. Kahaian, K. D. Kepler, P. A. Nelson, K. Amine, D. W. Dees, D. R. Vissers and M. M. Thackeray, J. Power Sources 5, 902 (1999).

    Article  Google Scholar 

  7. A. R. Armstrong, G. Armstrong, J. Canales and P. G. Bruce, J. Power Sources 146, 501 (2005).

    Article  ADS  Google Scholar 

  8. M. A. Reddy, M. S. Kishore, V. Pralong, V. Caignaert, U. V. Varadaraju and B. Raveu, Electrochemistry Commun. 8, 1299 (2006).

    Article  Google Scholar 

  9. G. F. Ortiza, I. Hanzua, P. Knauth, P. Lavela, J. L. Tiradob and T. Djenizian, Electrochem. Acta 54, 4262 (2009).

    Article  Google Scholar 

  10. X. P. Gao, Y. Lan, H. Y. Zhu, J. W. Liu, Y. P. Ge, F. Wu and D. Y. Song, Electrochem. Solid-State Lett. 8, A26 (2005).

    Article  Google Scholar 

  11. C. H. Jiang, I. Honma, T. Kudo and H. S. Zhou, Electrochem. Solid-State Lett. 10, A127 (2007).

    Article  Google Scholar 

  12. C. H. Jiang, I. Honma, T. Kudo and H. S. Zhou, J. Power Sources 166, 239 (2007).

    Article  Google Scholar 

  13. A. R. Armstrong, G. Armstrong, J. Canales, R. García and P. G. Bruce, Adv. Mater. 17, 862 (2005).

    Article  Google Scholar 

  14. Y. G. Guo, Y. S. Hu, W. Sigle and J. Maier, Adv. Mater. 19, 2087 (2007).

    Article  Google Scholar 

  15. Z. Ali, S. N. Cha, J. I. Sohn, I. Shakir, C. Yan, J. M. Kim and D. Kang, J. Mater. Chem. 22, 17625 (2012).

    Article  Google Scholar 

  16. G. F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J. L. Tirado and P. Knauth, Chem. Mater. 21, 63 (2009).

    Article  Google Scholar 

  17. N. A. Kyeremateng, V. Hornebecq, P. Knauth and T. Djenizian, Electrochimia Acta 62, 192 (2012).

    Article  Google Scholar 

  18. N. A. Kyeremateng, F. Vacandio, M. T. Sougrati, H. Martinez, J. C. Jumas, P. Knauth and T. Djenizian, J. Power Sources 224, 269 (2013).

    Article  Google Scholar 

  19. G. F. Ortiz, I. Hanzu, P. Knauth, P. Lavela, J. L. Tirado and T. Djenizian, Electrochem. Solid-State Lett. 12, A186 (2009).

    Article  Google Scholar 

  20. I. Paramasivam, J. M. Macak, A. Ghicov and P. Schmuki, Chemical Physics Lett. 445, 233 (2007).

    Article  ADS  Google Scholar 

  21. D. B. Ingram and S. Linic, J. American Chem. Soc. 133, 5202 (2011).

    Article  Google Scholar 

  22. I. Paramasivam, J. M. Macak, A. Ghicov and P. Schmuki Electrochemistry Comm. 10, 71 (2008).

    Article  Google Scholar 

  23. J. M. Macak and P. Schmuki, Electrochem. Acta 52, 1258 (2006).

    Article  Google Scholar 

  24. K Chen, X. Feng, R. Hu, Y. Li, K. Xie and H. Gu, J. Alloys Comp. 554, 72 (2013)

    Article  Google Scholar 

  25. B. Zhonghe, M. P. Paranthaman, B. Guo, X. G. Sun and S. Dai, J. Power Sources 222, 461 (2013).

    Article  Google Scholar 

  26. W. H. Ryu, D. H. Nam, Y. S. Ko, R. H. Kim and H. S. Kwon, Electrochem. Acta 61, 19 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chil-Hoon Doh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pervez, S.A., Farooq, U., Yaqub, A. et al. Improved performance of Ag-nanoparticle-decorated TiO2 nanotube arrays in Li-ion batteries. Journal of the Korean Physical Society 63, 1809–1814 (2013). https://doi.org/10.3938/jkps.63.1809

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.1809

Keywords

Navigation