Skip to main content
Log in

Strong pore-size dependence of the optical properties in porous alumina membranes

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report on the strong pore-size-dependent optical properties of porous alumina membranes (PAMs) by using the photoluminescence and the optical spectroscopic techniques. The pore diameters of our PAMs varied from 60 to 420 nm. All samples showed a sizable violet/blue emission with a strong temperature dependence. We found that the peak position of the emission shifted to higher energies with increasing pore diameter, which was in accord with the smaller binding energy extracted from the temperature dependence of the emission intensity. From the transmission spectra, we found that the effective bandgap of the PAMs shifted significantly to lower energies with increasing pore diameter, which indicated that the impurity states within the bandgap was affected strongly by the geometry of the PAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Jessensky, F. Muller and U. Gosele, Appl. Phys. Lett. 72, 1173 (1998).

    Article  ADS  Google Scholar 

  2. Y. C. Choi, J. Y. Hyeon, S. D. Bu and T. S. Bae, J. Korean Phys. Soc. 55, 835 (2009).

    Article  Google Scholar 

  3. Y. C. Choi, J. Y. Hyeon and S. D. Bu, J. Korean Phys. Soc. 56, 113 (2010).

    Article  Google Scholar 

  4. Y. C. Choi and S. D. Bu, J. Nanosci. Nanotechnol. 11, 1346 (2011).

    Article  Google Scholar 

  5. E. Gultepe, D. Nagesha, S. Sridhar and M. Amiji, Adv. Drug Delivery Rev. 62, 305 (2010).

    Article  Google Scholar 

  6. G. Jeon, S. Y. Yang and J. K. Kim, J. Mater. Chem. 22, 14814 (2012).

    Article  Google Scholar 

  7. P. P. Mardiloich, A. N. Govyadinov, N. I. Mukhurov, A. M. Rzhevskii and R. Paterson, J. Membr. Sci. 98, 131 (1995).

    Article  Google Scholar 

  8. Y. Li, G. H. Li, G.W. Meng, L. D. Zhang and F. Phillipp, J. Phys.: Condens. Matter 13, 2691 (2001).

    Article  ADS  Google Scholar 

  9. W. L. Xu, M. J. Zheng, S. Wu and W. Z. Shen, Appl. Phys. Lett. 85, 4364 (2004).

    Article  ADS  Google Scholar 

  10. D. W. Thomson, P. G. Snyder, L. Castro, L. Yan, P. Kaipa and J. A. Woolam, J. Appl. Phys. 97, 113511 (2005).

    Article  ADS  Google Scholar 

  11. W. L. Xu, H. Chen, M. J. Zheng, G. Q. Ding and W. Z. Shen, Opt. Mater. 28, 1160 (2006).

    Article  ADS  Google Scholar 

  12. B. Wang, G. T. Fei, M. Wang, M. G. Kong and L. D. Zhang, Nanotechnology 18, 365601 (2007).

    Article  ADS  Google Scholar 

  13. K. Nielsh, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S. F. Fischer and H. Kronmuller, Appl. Phys. Lett. 79, 1360 (2001).

    Article  ADS  Google Scholar 

  14. R. Karmhag, T. Tesfamichael, E. Wackelgard, G. A. Niklasson and M. Nygren, Sol. Energy 68, 329 (2000).

    Article  Google Scholar 

  15. H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi and T. Tamamura, Jpn. J. Appl. Phys. 38, L1403 (1999).

    Article  ADS  Google Scholar 

  16. X. Wu, S. Xiong, J. Guo, L. Wang, C. Hua, Y. Hou and P. K. Chu, J. Phys. Chem. C 116, 2356 (2012).

    Article  Google Scholar 

  17. A. Santos, V. S. Balderrama, M. Alba, P. Formentin, J. Ferre-Borrull, J. Pallares and L. F. Marsal, Adv. Mater. 24, 1050 (2012).

    Article  Google Scholar 

  18. A. Santos, G. Macias, J. Ferre-Borrull, J. Pallares and L. F. Marsal, ACS Appl. Mater. Interfaces 4, 3584 (2012).

    Article  Google Scholar 

  19. I. Costina and R. Franchy, Appl. Phys. Lett. 78, 4139 (2001).

    Article  ADS  Google Scholar 

  20. J. Kim et al., Nano Lett. 8, 1813 (2008).

    Article  ADS  Google Scholar 

  21. D. Lee and Y. Lee, New Physics: Sae Mulli 62, 1137 (2012).

    Article  Google Scholar 

  22. J. W. Park, D. J. Lee, D. H. Kim and Y. S. Lee, J. Korean Phys. Soc. 58, 316 (2011).

    Article  Google Scholar 

  23. D. H. Kim, D. J. Lee, J. W. Park and Y. S. Lee. J. Nanosci. Nanotech. 13, 1845 (2013).

    Google Scholar 

  24. J. Z. Zhang, M. J. Han, Y. W. Li, Z. G. Hu and J. H. Chu, Appl. Phys. Lett. 101, 081903 (2012).

    Article  ADS  Google Scholar 

  25. E. Przézdziecka, L. Wachnicki, W. Paszkowicz, E. Lusakowska, T. Krajewski, G. Luka, E. Guziewicz and M. Godlewski, Semicond. Sci. Technol. 24, 105014 (2009).

    Article  ADS  Google Scholar 

  26. Mark Fox, Optical Properties of Solids (Oxford University Press, 2001).

    Google Scholar 

  27. F. S. Ohuchi and R. H. French, J. Vac. Sci. Technol. A 6, 1695 (1987).

    Article  ADS  Google Scholar 

  28. S. Choi and T. Takeuchi, Phys. Rev. Lett. 50, 1474 (1983).

    Article  ADS  Google Scholar 

  29. A. Taflove and S. C. Hagness, Computational Electrodynamics, 2nd edition (Artech House, 2000).

    MATH  Google Scholar 

  30. A. Taflove, Advances in Computational Electrodynamics (Artech House, 1998).

    MATH  Google Scholar 

  31. F. I. Baida and D. V. Labeke, Opt. Commun. 209, 17 (2002).

    Article  ADS  Google Scholar 

  32. Y. Xie, A. R. Zakharian, J. V. Moloney and M. Mansuripur, Opt. Exp. 13, 4485 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, C.H., Kim, D.H., Lee, Y.S. et al. Strong pore-size dependence of the optical properties in porous alumina membranes. Journal of the Korean Physical Society 63, 1789–1793 (2013). https://doi.org/10.3938/jkps.63.1789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.1789

Keywords

Navigation