Skip to main content
Log in

Determination of the quantum-well thickness of ZnO-ZnMgO core-shell cylindrical heterostructures by using interband optical transitions

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

ZnO hexagonal core nanorods with an average diameter of 55 nm were initially grown by using the hydrothermal method; then, ZnO-Zn1−x Mg x O quantum wells were deposited around the ZnO core nanorods by using the atomic layer deposition technique. To investigate the optical band structures, we measured the photoluminescence transitions of as-grown ZnO nanorods, the ZnO-ZnMgO coreshell and the ZnO-ZnMgO core-shell + quantum wells. To determine the thickness of quantum wells, we attempted to solve the self-consistent nonlinear Poisson-Schrödinger equation for two-dimensional hexagonal quantum-well band structures. Using the experimental and the calculated results, we were able to quantitatively determine the quantum-well thicknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. She, X. H. Zhang, W. S. Shi, X. Fan, J. C. Chang, C. S. Lee, S. T. Lee and C. H. Liu, Appl. Phys. Lett. 92, 053111 (2008).

    Article  ADS  Google Scholar 

  2. L. Schmidt-Mende and J. L. MacManus-Driscoll, Materials Today 10, 40 (2007).

    Article  Google Scholar 

  3. R. Chen, G. Z. Xing, J. Gao, Z. Zhang, T. Wu and H. D. Sun, Appl. Phys. Lett. 95, 061908 (2009).

    Article  ADS  Google Scholar 

  4. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doan, V. Avrutin, S.-J. Cho and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).

    Article  ADS  Google Scholar 

  5. A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda and Y. Segawa, Appl. Phys. Lett. 75, 980 (1999).

    Article  ADS  Google Scholar 

  6. S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan and H. Shen, Appl. Phys. Lett. 80, 1529 (2002).

    Article  ADS  Google Scholar 

  7. T. Gruber, C. Kirchner, R. Kling, F. Reuss and A. Waag, Appl. Phys. Lett. 84, 5359 (2004).

    Article  ADS  Google Scholar 

  8. Y. R. Ryu, T. S. Lee, J. A. Lubguban, A. B. Corman, H. W. White, J. H. Leem, M. S. Han, Y. S. Park, C. J. Youn and W. J. Kim, Appl. Phys. Lett. 88, 052103 (2006).

    Article  ADS  Google Scholar 

  9. Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B. J. Kim, Y. S. Park and C. J. Youn, Appl. Phys. Lett. 88, 241108 (2006).

    Article  ADS  Google Scholar 

  10. T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura and H. Koinuma, Appl. Phys. Lett. 77, 1632 (2000).

    Article  ADS  Google Scholar 

  11. D. W. Ma, Z. Z. Ye and L. L. Chen, Phys. Stat. Sol. (a) 201, 2929 (2004).

    Article  ADS  Google Scholar 

  12. K. Sakurai, T. Takagi, T. Kubo, D. Kajita, T. Tanabe, H. Takasu, S. Fujita and S. Fujita, J. Crystal Growth 237, 514 (2002).

    Article  ADS  Google Scholar 

  13. C. Kim, W.-I. Park, G.-C. Yi and M. Kim, Appl. Phys. Lett. 89, 113106 (2006).

    Article  ADS  Google Scholar 

  14. E.-S. Jang. J. Y. Bae, J. Yoo, W. I. Park, D.-W. Kim, G.-C. Yi, T. Yatsui and M. Ohtsu, Appl. Phys. Lett. 88, 023102 (2006).

    Article  ADS  Google Scholar 

  15. W. W. Kim, J. W. Lee and S. H. Shim, J. Phys. and Chem. Solids 69, 1491 (2008).

    Article  ADS  Google Scholar 

  16. J. Yoo, Y. J. Hong, H. S. Jung, Y.-J. Kim, C.-H. Lee, J. Cho, Y.-J. Doh, L. S. Dang, K. H. Park and G.-C. Yi, Adv. Func. Mat. 19, 1601 (2009).

    Article  Google Scholar 

  17. B. Q. Cao, J. Zúñiga-Pérez, N. Boukos, C. Czekalla, H. Hilmer, J. Lenzner, A. Travlos, M. Lorenz and M. Grundmann, Nanotechnology 20, 305701 (2009).

    Article  Google Scholar 

  18. C. Cheng, B. Liu, E. J. Sie, W. Zhou, J. Zhang, H. Gong, C. H. A. Huan, T. C. Sum, H. Sun and H. J. Fan, J. Phys. Chem. C 114, 3863 (2010).

    Article  Google Scholar 

  19. Y. H. Wang, W. J. Duan, Z. L. Wu, D. Zheng, X. W. Zhou, B. Y. Zhou, L. J. Dai and Y. S. Wang, J. Luminescence 132, 1885 (2012).

    Article  Google Scholar 

  20. K. F. Karlsson, H. Weman, K. Leifer, A. Rudra, E. Kapon and S. K. Lyo, Appl. Phys. Lett. 90, 101108 (2007).

    Article  ADS  Google Scholar 

  21. S. Y. Lee, Y. H. Shin, Y. H. Park and Y. Kim, J. Korean. Phys. Soc. 58, 1174 (2011).

    Article  Google Scholar 

  22. Y. H. Shin and Y. Kim, J. Korean. Phys. Soc. 61, 1174 (2012).

    Google Scholar 

  23. http://www.nextnano.de/ and references therein.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmin Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, Y.H., Kim, Y. Determination of the quantum-well thickness of ZnO-ZnMgO core-shell cylindrical heterostructures by using interband optical transitions. Journal of the Korean Physical Society 63, 1760–1763 (2013). https://doi.org/10.3938/jkps.63.1760

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.1760

Keywords

Navigation