Skip to main content
Log in

Numerical analysis of a hollow electrode plasma torch with a reversed polarity discharge for radioactive waste treatment

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, a numerical analysis is carried out in order to investigate the effects of the electrode configuration and the operation conditions on the arc flow structure and the performance of a hollow electrode plasma torch with a reversed polarity discharge. From the numerical results, a swirl injection of plasma gas and a hollowed cathode with a convergent entrance are found to help control the recirculation directions of backflows and the attachment position of the anode spot in the rear electrode. For example, the anode spot is observed to be moved to the central point of the blocked side in the rear electrode (the anode) when the plasma-forming gases are injected with a swirl. This attachment point is predicted to act as a stable anode spot for the transferred operation of the hollow electrode plasma torch with a reversed polarity discharge. In addition, the torch performance is analyzed for operation variables, such as the arc current and the gas flow rates. Similar to that of a conventional hollow electrode plasma torch, the scale-up of input power is accompanied by increases in the arc current and the gas flow rate while increasing the arc current brings about a deterioration in the torch efficiency, which is defined as the ratio of the exit enthalpy to the input power. On the other hand, the temperature profiles at the torch’s exit plane show relatively negligible differences for various arc currents and gas flow rates due to the cathode spot being close to the torch exit. Based on these features, we expect the hollow electrode plasma torch with a reversed polarity discharge to be a promising tool for treating radioactive wastes in a single step, both as a non-transferred-type plasma incinerator for combustibles and as a transferred-type arc-melter for non-combustibles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Grimes and W. J. Nuttall, Science 329, 799 (2010).

    Article  ADS  Google Scholar 

  2. N. Bauer, R. J. Brecha and G. Luderer, Proc. Natl. Acad. Sci. USA. 109, 16805 (2012).

    Article  ADS  Google Scholar 

  3. M. R. Culley and H. Angelique, RHCPP 1, 1 (2010).

    Google Scholar 

  4. J. E. Campbell and R. M. Cranwell, Science 239, 1389 (1988).

    Article  ADS  Google Scholar 

  5. C. W. Forsberg, Nucl. Chem. Waste Man. 4, 313 (1983).

    Article  Google Scholar 

  6. S. T. Yun, Prog. Nucl. Energ. 50, 680 (2008).

    Article  Google Scholar 

  7. K. W. Han, J. Heinonen and A. Bonne, IAEA Bulletin 39, 33 (1997).

    Google Scholar 

  8. G. S. Duffo, E. A. Arva, F. M. Schulz and D. R. Vazquez, J. Nucl. Mater. 420, 382 (2012).

    Article  ADS  Google Scholar 

  9. S. Poyet and X. Bourbon, Transp. Porous Med. 95, 55 (2012).

    Article  Google Scholar 

  10. M. Aoyama, Y. Miyamoto, M. Fukumoto and O. Suto, J. Phys. Chem. Solids 66, 608 (2005).

    Article  ADS  Google Scholar 

  11. J. M. Pope and D. E. Harrison, US Patent 4,376,070.

  12. W. E. Lee, M. I. Ojovan, M. C. Stennett and N. C. Hyatt, Adv. Appl. Ceram. 105, 3 (2006).

    Article  Google Scholar 

  13. M. I. Ojovan and W. E. Lee, Metall. Mater. Trans. A 42A, 837 (2011).

    Article  ADS  Google Scholar 

  14. C. C. Tzeng, Y. Y. Kuo, T. F. Huang, D. L. Lin and Y. J. Yu, J. Hazard. Mater. 58, 207 (1998).

    Article  Google Scholar 

  15. A. Nezu, T. Morishima and T. Watanabe, Thin Solid Films 435, 335 (2003).

    Article  ADS  Google Scholar 

  16. E. Gomez, D. A. Rani, C. R. Cheeseman, D. Deegan, M. Wise and A. R. Boccaccini, J. Hazard. Mater. 161, 614 (2009).

    Article  Google Scholar 

  17. M. Hur and S. H. Hong, J. Phys. D: Appl. Phys. 35, 1946 (2002).

    Article  ADS  Google Scholar 

  18. J. M. Park, K. S. Kim, T. H. Hwang and S. H. Hong, IEEE Trans. Plasma Sci. 32, 479 (2004).

    Article  ADS  Google Scholar 

  19. S. L. Camacho, Pure Appl. Chem. 60, 619 (1988).

    Article  Google Scholar 

  20. G. J. Hanus, T. J. Stahl and S. L. Camacho, US Patent 5,451,740.

  21. J. F. Brilhac, B. Pateyron, J. F. Coudert, P. Fauchais and A. Bouvier, Plasma Chem. Plasma Process. 15, 257 (1995).

    Article  Google Scholar 

  22. B. E. Launder and D. B. Spalding, Comput. Meth. Appl. Mech. Eng. 3, 269 (1974).

    Article  MATH  Google Scholar 

  23. M. I. Boulos, P. Fauchais and E. Pfender, Thermal Plasmas: Fundamentals and Applications (Plenum Press, New York, 1994), Vol. 1.

    Book  Google Scholar 

  24. P. C. Huang, Ph. D dissertation, University of Minneapolis, 1993.

  25. S. Choi, J. M. Park, W. T. Ju and S. H. Hong, J. Therm. Sci. Technol. 6, 210 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Ho Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SC., Kim, DU., Kim, MH. et al. Numerical analysis of a hollow electrode plasma torch with a reversed polarity discharge for radioactive waste treatment. Journal of the Korean Physical Society 63, 1746–1754 (2013). https://doi.org/10.3938/jkps.63.1746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.1746

Keywords

Navigation