Skip to main content
Log in

Scheme for implementing the optimal quantum cloning via long-range off-resonant Raman coupling

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We propose a physical scheme to implement the optimal 1 → 2 quantum cloning via long-range off-resonant Raman coupling for distant atoms trapped in separate cavities connected by optical fibers. We show that, if the single-qubit rotation angles are choosen appropriately, the optimal symmetric (asymmetric) universal quantum cloning and optimal symmetric (asymmetric) phase-covariant cloning can be effectively realized. The scheme is insensitive to cavity decay, fiber loss, and atomic spontaneous emission because the effective long-distance interaction induced by long-range off-resonant Raman coupling is mediated by the vacuum fields of the fiber and cavity and because the total system evolves in the decoherence-free subspace in which neither of the subsystems is excited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).

    Article  ADS  Google Scholar 

  2. V. Bužek and M. Hillery, Phys. Rev. A. 54, 1844 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  3. N. Gisin and S. Massar, Phys. Rev. Lett. 79, 2153 (1997).

    Article  ADS  Google Scholar 

  4. V. Bužek and M. Hillery, Phys. Rev. Lett. 81, 5003 (1998).

    Article  ADS  Google Scholar 

  5. X. B. Zou, K. Pahlke and W. Mathis, Phys. Rev. A 67, 024304 (2003).

    Article  ADS  Google Scholar 

  6. D. Bruß, M. Cinchetti, G. M. D’Ariano and C. Macchiavello, Phys. Rev. A 62, 012302 (2000).

    Article  ADS  Google Scholar 

  7. H. Fan, H. Imai, K. Matsumoto and X. B. Wang, Phys. Rev. A 67, 022317 (2003).

    Article  ADS  Google Scholar 

  8. R. C. Yang, H. C. Li, X. Li, Z. P. Huang and H. Xie, Chin. Phys. B 17, 967 (2008).

    Article  ADS  Google Scholar 

  9. P. Navez and N. J. Cerf, Phys. Rev. A 68, 032313 (2003).

    Article  ADS  Google Scholar 

  10. W. H. Zhang, T. Wu, L. Ye and J. L. Dai, Phys. Rev. A 75, 044303 (2007).

    Article  ADS  Google Scholar 

  11. W. H. Zhang and L. Ye, New J. Phys. 9, 318 (2007).

    Article  MathSciNet  Google Scholar 

  12. N. Gisin, G. Ribordy, W. Tittela and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).

    Article  ADS  Google Scholar 

  13. V. Scarani, S. Iblisdira and N. Gisin, Rev. Mod. Phys. 77, 1225 (2005).

    Article  ADS  MATH  Google Scholar 

  14. L. B. Yu, W. H. Zhang and L. Ye, Phys. Rev. A 76, 034303 (2007).

    Article  ADS  Google Scholar 

  15. Y. B. Zhan, Chin. Phys. B 17, 411 (2008).

    Article  ADS  Google Scholar 

  16. J. L. Dai and W. H. Zhang, Chin. Phys. B 18, 426 (2009).

    Article  ADS  Google Scholar 

  17. B. L. Fang, Q. M. Song and L. Ye, Phys. Rev. A 83, 042309 (2001).

    Article  ADS  Google Scholar 

  18. Y. H. Zhou, Chin. Phys. B 20, 080305 (2001).

    Article  Google Scholar 

  19. Z. Zhao, A. N. Zhang, X. Q. Zhou, Y. A. Chen, C. Y. Lu, A. Karlsson and J. W. Pan, Phys. Rev. Lett. 95, 030502 (2005).

    Article  ADS  Google Scholar 

  20. J. F. Du, T. Durt, P. Zou, H. Li, L. C. Kwek, C. H. Lai, C. H. Oh and A. Ekert, Phys. Rev. Lett. 94, 040505 (2005).

    Article  ADS  Google Scholar 

  21. H. W. Chen, X. Y. Zhou, D. Suter and J. F. Du, Phys. Rev. A 75, 012317 (2007).

    Article  ADS  Google Scholar 

  22. J. F. Zhang, N. Rajendran, X. H. Peng and D. Suter, Phys. Rev. A 76, 012317 (2007).

    Article  ADS  Google Scholar 

  23. H. F. Wang, S. Zhang, A. D. Zhu and K. H. Yeon, J. Opt. Soc. Am. B 29, 1078 (2012).

    Article  ADS  Google Scholar 

  24. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut and H. J. Kimble, Phys. Rev. A 71, 013817 (2005).

    Article  ADS  Google Scholar 

  25. J. R. Buck and H. J. Kimble, Phys. Rev. A 67, 033806 (2003).

    Article  ADS  Google Scholar 

  26. D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, Nature 421, 925 (2003).

    Article  ADS  Google Scholar 

  27. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streeda and H. J. Kimble, Opt. Lett. 23, 247 (1998).

    Article  ADS  Google Scholar 

  28. D. D. Lv, H. Lu, Y. F. Yu, X. L. Feng and Z. M. Zhang, Chin. Phys. Lett. 27, 020302 (2010).

    Article  ADS  Google Scholar 

  29. A. D. Boozer, A. Boca, R. Miller, T. E. Northup and H. J. Kimble, Phys. Rev. Lett. 97, 083602 (2006).

    Article  ADS  Google Scholar 

  30. S. M. Spillane, T. J. Kippenberg, O. J. Painter and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).

    Article  ADS  Google Scholar 

  31. P. E. Barclay, K. Srinivasan, O. Painter, B. Lev and H. Mabuchi, Appl. Phys. Lett. 89, 131108 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Fu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, JJ., Yeon, KH., Wang, HF. et al. Scheme for implementing the optimal quantum cloning via long-range off-resonant Raman coupling. Journal of the Korean Physical Society 63, 1696–1702 (2013). https://doi.org/10.3938/jkps.63.1696

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.1696

Keywords

Navigation