Skip to main content
Log in

Covariance fitting of highly-correlated data in lattice QCD

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We address a frequently-asked question on the covariance fitting of highly-correlated data such as our B K data based on the SU(2) staggered chiral perturbation theory. Basically, the essence of the problem is that we do not have a fitting function accurate enough to fit extremely precise data. When eigenvalues of the covariance matrix are small, even a tiny error in the fitting function yields a large chi-square value and spoils the fitting procedure. We have applied a number of prescriptions available in the market, such as the cut-off method, modified covariance matrix method, and Bayesian method. We also propose a brand new method, the eigenmode shift (ES) method, which allows a full covariance fitting without modifying the covariance matrix at all. We provide a pedagogical example of data analysis in which the cut-off method manifestly fails in fitting, but the rest work well. In our case of the B K fitting, the diagonal approximation, the cut-off method, the ES method, and the Bayesian method work reasonably well in an engineering sense. However, interpreting the meaning of χ 2 is easier in the case of the ES method and the Bayesian method in a theoretical sense aesthetically. Hence, the ES method can be a useful alternative optional tool to check the systematic error caused by the covariance fitting procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bae, Y. -C. Jang, C. Jung, H. -J. Kim, J. Kim, J. Kim, K. Kim, W. Lee, S. R. Sharpe and B. Yoon, Phys. Rev. D 82, 114509 (2010).

    Article  ADS  Google Scholar 

  2. T. Bae, Y. -C. Jang, C. Jung, H. -J. Kim, J. Kim, J. Kim, K. Kim, S. Kim, W. Lee, S. R. Sharpe, B. Yoon, Phys. Rev. Lett. 109, 041601 (2012).

    Article  ADS  Google Scholar 

  3. B. Thacker and G. Lepage, Phys. Rev. D 43, 196 (1991).

    Article  ADS  Google Scholar 

  4. I. Drummond and R. Horgan, Phys. Lett. B 302, 271 (1993).

    Article  ADS  Google Scholar 

  5. G. Kilcup, Nucl. Phys. Proc. Suppl. 34, 350 (1994).

    Article  ADS  Google Scholar 

  6. C. Michael, Phys. Rev. D 49, 2616 (1994).

    Article  ADS  Google Scholar 

  7. C. Michael and A. McKerrell, Phys. Rev. D 51, 3745 (1995).

    Article  ADS  Google Scholar 

  8. This is different from the normal χ 2 distribution, which assumes uniform prior information. We will address this issue when we discuss the Bayesian method.

  9. S. A. Gottlieb, W. Liu, R. L. Renken, R. L. Sugar and D. Toussaint, Phys. Rev. D 38, 2245 (1988).

    Article  ADS  Google Scholar 

  10. D. Toussaint, From Action to Answers (World Scientific, Singapore, 1990), page 121.

    Google Scholar 

  11. T. W. Anderson, An Introduction to Multivariate Statistical Analysis, 3rd ed., Wiley Series in Probability and Statistics (Wiley Interscience, New Jersey, 2003).

    MATH  Google Scholar 

  12. R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, 6th ed. (Pearson Prentice Hall, New Jersey, 2007).

    MATH  Google Scholar 

  13. W. Lee and S. R. Sharpe, Phys. Rev. D 60, 114503 (1999).

    Article  ADS  Google Scholar 

  14. C. Aubin and C. Bernard, Phys. Rev. D 68, 034014 (2003).

    Article  ADS  Google Scholar 

  15. A. Bazavov, D. Toussaint, C. Bernard, J. Laiho, C. DeTar, L. Levkova, M. B. Oktay, S. Gottlieb, U. M. Heller, J. E. Hetrick, P. B. Mackenzie, R. Sugar and R. S. Van de Water, Rev. Mod. Phys. 82, 1349 (2010).

    Article  ADS  Google Scholar 

  16. R. V. de Water and S. Sharpe, Phys. Rev. D 73, 014003 (2006).

    Article  ADS  Google Scholar 

  17. M. J. Schervish, Theory of Statistics (Springer-Verlag, New Jersey, 1995).

    Book  MATH  Google Scholar 

  18. D. Toussaint and W. Freeman (2010), arXiv:0808.2211 [hep-lat].

  19. W. Press, S. Teukosky, W. Vetterling, and B. Flannary, Numerical Recipes (Cambridge University Press, New York, 2007), Chapter 15, Section 4.

    MATH  Google Scholar 

  20. J. A. Bailey et al. [Fermilab Lattice and MILC Collaborations], PoS LATTICE 2010, 306 (2010).

    Google Scholar 

  21. J. A. Bailey et al. [Fermilab Lattice and MILC Collaborations], PoS LATTICE 2010, 311 (2010).

    Google Scholar 

  22. T. Bhattacharya, S. Chandrasekharan, R. Gupta, W. - J. Lee and S. R. Sharpe, Phys. Lett. B 461, 79 (1999).

    Article  ADS  Google Scholar 

  23. C. Bernard, S. Datta, T. A. DeGrand, C. E. DeTar, S. A. Gottlieb, U. M. Heller, C. McNeile, K. Orginos, R. Sugar, D. Toussaint, Phys. Rev. D 66, 094501 (2002).

    Article  ADS  Google Scholar 

  24. MILC does not use this method anymore in their fitting; private communication with Claude Bernard, Carleton Detar and Doug Toussaint (2011).

  25. D. Sivia and J. Skilling, Data Analaysis — A Bayesian Tutorial, 2nd ed. (Oxford University Press, 2006).

    Google Scholar 

  26. Here, the quality of fitting means that we can compare two different fitting procedures and determine which fitting is more reliable based on the Bayesian method. For example, we can compare the full covariance fitting and the ES method for B K, because both these methods allow for the probability interpretation.

  27. G. P. Lepage, B. Clark, C. T. H. Davies, K. Hornbostel, P. B. Mackenzie, C. Morningstar and H. Trottier, Nucl. Phys. Proc. Suppl. 106, 12 (2002).

    Article  ADS  Google Scholar 

  28. W. Press, S. Teukosky, W. Vetterling and B. Flannary, Numerical Recipes 3rd ed. (Cambridge University Press, New York, 2007), Chapter 7, Section 4.

    MATH  Google Scholar 

  29. R. V. Hogg, J. W. McKean and A. T. Craig, Introduction to Mathematical Statistics 6th ed. (Pearson Prentice Hall, New Jersey, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weonjong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, B., Jang, YC., Jung, C. et al. Covariance fitting of highly-correlated data in lattice QCD. Journal of the Korean Physical Society 63, 145–162 (2013). https://doi.org/10.3938/jkps.63.145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.145

Keywords

Navigation