Skip to main content
Log in

Evaluation of the EDGE detector in small-field dosimetry

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This study evaluates a new diode detector design for small-field dosimetry. An accurate detector that has a small volume are necessary to compile data for stereotactic radiosurgery (SRS), stereotactic body radiotherapy (SBRT), and intensity-modulated radiotherapy (IMRT). Two semiconductor diode detectors and one ionization chamber were used to measure the profiles, percent depth doses (PDDs), and relative output factors (OFs) of a Novalis 6-MV SRS beam. Profiles and PDD data were collected using 5.0-, 10.0-, 15.0-, 20.0-, 30.0-, and 50.0-mm micro multileaf collimators (mMLCs) at small fields and a 98.0 × 98.0-mm2 reference field. OFs were collected for each of the mMLCs. The EDGE diode detector, the diode detector, and the ion chamber (0.007 cc) were used in the study. Detector measurements were performed using the 3D water phantom with a source-to-surface distance of 100-cm at a depth of 1.5-cm. The measurements were analyzed using the IBA OmniPro Accept 7th version software. In addition, all data were compared to Monte Carlo simulations. The semiconductor diodes had similar OFs and PDDs for each of the mMLCs used. The Dmax values of the EDGE diode detector, measured from the PDD, ranged from 8.5 to 14.0-mm with an average of 12.4-mm. The field widths of the EDGE diode detector were found to have similar values. The performance of the EDGE diode detector was comparable for all small-field measurements. Additionally, no evidence of an energy response was observed for the EDGE detectors for a field of 98 × 98-mm2. This is particularly important when measuring the relative OF for small fields or gathering larger-sized field data for the commissioning of a treatment planning system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Pantelis et al., Med. Phys. 39, 4875 (2012).

    Article  Google Scholar 

  2. M. M. Aspradakis, J. P. Byrne, H. Palmans, K. Conway, K. Rosser, A. P. Warrington and S. Duane, Small Field MV Photon Dosimetry, IPEM Report 103 (York, UK, 2010).

    Google Scholar 

  3. I. J. Das, G. X. Ding and A. Ahnesjo, Med. Phys. 35, 206 (2008).

    Article  Google Scholar 

  4. J. Fan, K. Paskalev, L. Wang, L. Jin, J. Li, A. Eldeeb and C. Ma, Med. Phys. 36, 5292 (2009).

    Article  Google Scholar 

  5. P. Francescon, S. Cora, C. Cavedon, P. Scalchi, S. Reccanello and F. Colombo, Med. Phys. 25, 503 (1998).

    Article  Google Scholar 

  6. M. Heydarian, P. W. Hoban and A. H. Beddoe, Phys. Med. Biol. 41, 93 (1996).

    Article  Google Scholar 

  7. W. U. Laub and T. Wong, Med. Phys. 30, 341 (2003).

    Article  Google Scholar 

  8. A. Moutsatsos et al., Med. Phys. 36, 4277 (2009).

    Article  Google Scholar 

  9. E. Pantelis, C. Antypas, L. Petrokokkinos, P. Karaiskos, P. Papagiannis, M. Kozicki, E. Georgiou, L. Sakelliou and I. Seimenis, Med. Phys. 35, 2312 (2008).

    Article  Google Scholar 

  10. O. A. Sauer and J. Wilbert, Med. Phys. 34, 1983 (2007).

    Article  Google Scholar 

  11. X. R. Zhu, J. J. Allen, J. Shi and W. E. Simon, Med. Phys. 27, 472 (2000).

    Article  Google Scholar 

  12. M. Westermark, J. Arndt, B. Nilsson and A. Brahme, Phys. Med. Biol. 45, 685 (2000).

    Article  Google Scholar 

  13. P. Francescon, S. Cora and C. Cavedon, Med. Phys. 35, 504 (2008).

    Article  Google Scholar 

  14. P. Francescon, S. Cora, C. Cavedon and P. Scalchi, J. Appl. Clin. Med. Phys. 10, 2939 (2009).

    Google Scholar 

  15. E. Pantelis, A. Moutsatsos, K. Zourari, W. Kilby, C. Antypas, P. Papagiannis, P. Karaiskos, E. Georgiou and L. Sakelliou, Med. Phys. 37, 2369 (2010).

    Article  Google Scholar 

  16. H. Bouchard, J. Seuntjens, J. F. Carrier and I. Kawrakow, Med. Phys. 36, 4654 (2009).

    Article  Google Scholar 

  17. H. Bouchard, J. Seuntjens and I. Kawrakow, Phys. Med. Biol. 56, 2617 (2011).

    Article  Google Scholar 

  18. S. Dieterich and G. W. Sherouse, Med. Phys. 38, 4166 (2011).

    Article  Google Scholar 

  19. G. X. Ding, Phys. Med. Biol. 48, 3865 (2003).

    Article  Google Scholar 

  20. G. X. Ding, Med. Phys. 31, 2527 (2004).

    Article  Google Scholar 

  21. R. Capote, F. Sanchez-Doblado, A. Leal, J. I. Lagares, R. Arrans and G. H. Hartmann, Med. Phys. 31, 2416 (2004).

    Article  Google Scholar 

  22. F. Verhaegen, I. J. Das and H. Palmans, Phys. Med. Biol. 43, 2755 (1998).

    Article  Google Scholar 

  23. D. W. Rogers, B. A. Faddegon, G. X. Ding, C. M. Ma, J. We and T. R. Mackie, Med. Phys. 22, 503 (1995).

    Article  Google Scholar 

  24. D. Sheikh-Bagheri, D. W. Rogers, C. K. Ross and J. P. Seuntjens, Med. Phys. 27, 2256 (2000).

    Article  Google Scholar 

  25. J. Jang, Y. N. Kang, D. O. Shin, B. O. Choi, T. K. Lee, I. B. Choi, M. C. Kim and S. I. Kwon, Korean J. Med. Phys. 17, 47 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-nam Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, HJ., Kim, MH., Choi, IB. et al. Evaluation of the EDGE detector in small-field dosimetry. Journal of the Korean Physical Society 63, 128–134 (2013). https://doi.org/10.3938/jkps.63.128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.128

Keywords

Navigation