Skip to main content
Log in

Sparsely-synchronized brain rhythm in a small-world neural network

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Sparsely-synchronized cortical rhythms, associated with diverse cognitive functions, have been observed in electric recordings of brain activity. At the population level, cortical rhythms exhibit small-amplitude fast oscillations while at the cellular level, individual neurons show stochastic firings sparsely at a much lower rate than the population rate. We study the effect of network architecture on sparse synchronization in an inhibitory population of subthreshold Morris-Lecar neurons (which cannot fire spontaneously without noise). Previously, sparse synchronization was found to occur for cases of both global coupling (i.e., regular all-to-all coupling) and random coupling. However, a real neural network is known to be non-regular and non-random. Here, we consider sparse Watts-Strogatz small-world networks which interpolate between a regular lattice and a random graph via rewiring. We start from a regular lattice with only short-range connections and then investigate the emergence of sparse synchronization by increasing the rewiring probability p for the short-range connections. For p = 0, the average synaptic path length between pairs of neurons becomes long; hence, only an unsynchronized population state exists because the global efficiency of information transfer is low. However, as p is increased, long-range connections begin to appear, and global effective communication between distant neurons may be available via shorter synaptic paths. Consequently, as p passes a threshold p th (}~ 0.044), sparsely-synchronized population rhythms emerge. However, with increasing p, longer axon wirings become expensive because of their material and energy costs. At an optimal value p* DE (}~ 0.24) of the rewiring probability, the ratio of the synchrony degree to the wiring cost is found to become maximal. In this way, an optimal sparse synchronization is found to occur at a minimal wiring cost in an economic small-world network through trade-off between synchrony and wiring cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Buzsáki, Rhythms of the Brain (Oxford University Press, New York, 2006).

    Book  MATH  Google Scholar 

  2. R. D. Traub and M. A. Whittington, Cortical Oscillations in Health and Diseases (Oxford University Press, New York, 2010).

    Book  Google Scholar 

  3. X.-J. Wang, Physiol. Rev. 90, 1195 (2010).

    Article  Google Scholar 

  4. A. Fisahn, F. G. Pike, E. H. Buhl and O. Paulsen, Nature 394, 186 (1998).

    Article  ADS  Google Scholar 

  5. J. Csicsvari, H. Hirase, A. Czurko and G. Buzsáki, Neuron 21, 179 (1998).

    Article  Google Scholar 

  6. P. Fries, J. H. Reynolds, A. E. Rorie and R. Desimone, Science 291, 1560 (2001).

    Article  ADS  Google Scholar 

  7. M. Steriade, D. McCormick and T. Sejnowski, Science 262, 679 (1993).

    Article  ADS  Google Scholar 

  8. A. Destexhe and T. J. Sejnowski, Physiol. Rev. 83, 1401 (2003).

    Google Scholar 

  9. X.-J. Wang, in Encyclopedia of Cognitive Science, edited by L. Nadel (MacMillan, London, 2003), p. 272.

  10. N. Brunel and V. Hakim, Chaos 18, 015113 (2008); N. Brunel and V. Hakim, Neural Comput. 11, 1621 (1999); N. Brunel, J. Comput. Neurosci. 8, 183 (2000); N. Brunel and X.-J. Wang, J. Neurophysiol. 90, 415 (2003); C. Geisler, N. Brunel and X.-J. Wang, J. Neurophysiol. 94, 4344 (2005); N. Brunel and D. Hansel, Neural Comput. 18, 1066 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  11. W. Lim and S.-Y. Kim, J. Comput. Neurosci. 31, 667 (2011); D.-G. Hong, S.-Y. Kim and W. Lim, J. Korean Phys. Soc. 59, 2840 (2011); S.-Y. Kim, D.-G. Hong, J. Kim and W. Lim, J. Phys. A 45, 155102 (2012).

    Article  MathSciNet  Google Scholar 

  12. G. Buzsáki, C. Geisler, D. A. Henze and X.-J. Wang, Trends in Neurosciences 27, 186 (2004).

    Article  Google Scholar 

  13. D. B. Chklovskii, B. W. Mel and K. Svoboda, Nature 431, 782 (2004).

    Article  ADS  Google Scholar 

  14. S. Song, P. J. Sjöström, M. Reigl, S. Nelson and D. B. Chklovskii, PLoS Biol. 3, E68 (2005)

    Article  Google Scholar 

  15. P. Larimer and B. W. Strowbridge, J. Neurosci. 28, 12212 (2008).

    Article  Google Scholar 

  16. E. Bullmore and O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009).

    Article  Google Scholar 

  17. R. Albert and A. L. Barabasi, Rev. Mod. Phys. 74, 47 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. X. F. Wang and G. Chen, IEEE Cir. Sys. Mag. 3, 6 (2003).

    Article  Google Scholar 

  19. O. Sporns, G. Tononi and G. M. Edelman, Cereb. Cortex 10, 127 (2000).

    Article  Google Scholar 

  20. L. F Lago-Fernández, R. Huerta, F. Corbacho and J. A. Sigüenza,, Phys. Rev. Lett. 84, 2758 (2000).

    Article  ADS  Google Scholar 

  21. O. Kwon, H. T. Moon, Phys. Lett. A 298, 319 (2002).

    Article  ADS  MATH  Google Scholar 

  22. A. Roxin, H. Riecke and S. A. Solla, Phys. Rev. Lett. 92, 198101 (2004).

    Article  ADS  Google Scholar 

  23. M. Kaiser and C. C. Hilgetag, PLoS Comp. Biol. 2, e95 (2006).

    Article  ADS  Google Scholar 

  24. H. Riecke, A. Roxin, S. Madruga and S. Solla, Chaos 17, 026110 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Achard and E. T. Bullmore, PLoS Comp. Biol. 3, e17 (2007).

    Article  ADS  Google Scholar 

  26. S. Yu, D. Huang, W. Singer and D. Nikolie, Cereb. Cortex 18, 2891 (2008).

    Article  Google Scholar 

  27. Q. Wang, Z. Duan, M. Perc and G. Chen, EPL 83, 50008 (2008).

    Article  ADS  Google Scholar 

  28. M. Shanahan, Phys. Rev. E 78, 041924 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Ozer, M. Perc and M. Uzuntarla, Phys. Lett. A 373, 964 (2009).

    Article  ADS  MATH  Google Scholar 

  30. Q. Wang, M. Perc, Z. Duan and G. Chen, Physica A 389, 3290 (2010).

    Article  ADS  Google Scholar 

  31. J. T. Lizier, S. Pritam and M. Prokopenko, Artificial Life 17, 293 (2011).

    Article  Google Scholar 

  32. C. A. S. Batista, A. M. Batista, J. A. C. de Pontes, R. L. Viana and S. R. Lopes, Phys. Rev. E 76, 016218 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  33. R. J. Morgan and I. Soltesz, Proc. Natl. Acad. Sci. USA 105, 6179 (2008).

    Article  ADS  Google Scholar 

  34. P. Bonifazi, M. Goldin, M. A. Picardo, I. Jorquera, A. Cattani, G. Bianconi, A. Represa, Y. Ben-Ari and R. Cossart, Science 326, 1419 (2009).

    Article  ADS  Google Scholar 

  35. Q. Wang, M. Perc. Z. Duan and G. Chen, Phys. Rev. E 80, 026206 (2009).

    Article  ADS  Google Scholar 

  36. Q. Wang, G. Chen and M. Perc, PLoS ONE 6, e15851 (2011).

    Article  ADS  Google Scholar 

  37. D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).

    Article  ADS  Google Scholar 

  38. V. Latora and M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001); Eur. Phys. J. B 32, 249 (2003).

    Article  ADS  Google Scholar 

  39. S. B. Laughlin and T. J. Sejnowski, Science 301, 1870 (2003).

    Article  ADS  Google Scholar 

  40. D. B. Chklovskii, T. Schikorski and C. F. Stevens, Neuron 34, 341 (2002).

    Article  Google Scholar 

  41. D. B. Chklovskii and A. A. Koulakov, Annu. Rev. Neurosci. 27, 369 (2004).

    Article  Google Scholar 

  42. D. B. Chklovskii, Neuron 43, 609 (2004).

    Google Scholar 

  43. S. Achard and E. Bullmore, PLoS Comp. Biol. 3, e17 (2007).

    Article  ADS  Google Scholar 

  44. E. Bullmore and O. Sporns, Nat. Rev. Neurosci. 13, 336 (2012).

    Google Scholar 

  45. C. Morris and H. Lecar, Biophys. J. 35, 193 (1981).

    Article  ADS  Google Scholar 

  46. J. Rinzel and B. Ermentrout, in Methods in Neural Modeling: from Ions to Networks, edited by C. Koch and I. Segev (MIT Press, Cambridge, 1998), p. 251.

  47. A. L. Hodgkin, J. Physiol. 107, 165 (1948).

    Google Scholar 

  48. D. Golomb and J. Rinzel, Physica D 72, 259 (1994).

    Article  ADS  MATH  Google Scholar 

  49. X.-J. Wang and G. Buzsáki, J. Neurosci. 16, 6402 (1996).

    Google Scholar 

  50. C. van Vreewijk, L. F. Abbott and G. B. Ermentrout, J. Comput. Neurosci. 1, 313 (1994).

    Article  Google Scholar 

  51. D. Hansel, G. Mato and C. Meunier, Neural Comput. 7, 307 (1995).

    Article  Google Scholar 

  52. X.-J. Wang and J. Rinzel, Neural Comput. 4, 84 (1992).

    Article  Google Scholar 

  53. J. White, C. C. Chow, J. Ritt, C. Soto-Trevino and N. Kopell, J. Comput. Neurosci. 5, 5 (1998).

    Article  MATH  Google Scholar 

  54. M. A. Whittington, R. D. Traub, N. Kopell, B. Ermentrout and E. H. Buhl, Int. J. Psychophysiol. 38, 315 (2000).

    Article  Google Scholar 

  55. P. H. E. Tiesinga, J.-M. Fellous, J. V. Jose and T. J. Sejnowski, Hippocampus 11, 251 (2001).

    Article  Google Scholar 

  56. G. Buzsáki and X.-J. Wang, Annu. Rev. Neurosci. 35, 203 (2012).

    Article  Google Scholar 

  57. C. Börgers and N. Kopell,, Neural Comput. 15, 509 (2003); ibid. 17, 557 (2005).

    Article  MATH  Google Scholar 

  58. M. San Miguel and R. Toral, in Instabilities and Nonequilibrium Structures VI, edited by J. Martinez, R. Tiemann, and E. Tirapegui (Kluwer Academic Publisher, Dordrecht, 2000), p. 35.

  59. S. Milgram, Psychology Today 1, 61 (1967).

    Google Scholar 

  60. J. Guare, Six Degrees of Separation: A Play (Random House, New York, 1990).

    Google Scholar 

  61. S. C. Manrubia, A. S. Mikhailov and D. H. Zanette, Emergence of Dynamical Order (World Scientific, Singapore, 2004).

    MATH  Google Scholar 

  62. W. Lim and S.-Y. Kim, J. Korean Phy. Soc. 57, 1290 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woochang Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SY., Lim, W. Sparsely-synchronized brain rhythm in a small-world neural network. Journal of the Korean Physical Society 63, 104–113 (2013). https://doi.org/10.3938/jkps.63.104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.104

Keywords

Navigation