Advertisement

Journal of the Korean Physical Society

, Volume 63, Issue 5, pp 1019–1022 | Cite as

Polarization dependence of the photocurrent due to an anisotropic electron-photon interaction in Pd-graphene-Pd devices

  • Minjung Kim
  • Duhee Yoon
  • Sun Keun Choi
  • Hyeonsik Cheong
  • Ho Ang Yoon
  • Sang Wook Lee
Article
  • 154 Downloads

Abstract

We measured the polarization dependence of the photocurrent in symmetric Pd-graphene-Pd photodevices. The photocurrent is maximum when the polarization angle of the incident light is parallel to the edge of an electrode. On the other hand, when the polarization direction is parallel to the graphene channel, the photocurrent is minimum. This polarization dependence of the photocurrent is similar to what has been observed in an asymmetric Pd-graphene-Ti device and results from an anisotropic electron-photon interaction in graphene, which generates photocarriers with momenta predominantly in the direction perpendicular to the polarization direction.

Keywords

Graphene photodevice Graphene Photocurrent Raman mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).ADSCrossRefGoogle Scholar
  2. [2]
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).ADSCrossRefGoogle Scholar
  3. [3]
    F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).ADSCrossRefGoogle Scholar
  4. [4]
    Ph. Avouris, Nano Lett. 10, 4285 (2010).ADSCrossRefGoogle Scholar
  5. [5]
    D. Yoon, H. Cheong, J. S. Chio, and B. H. Park, J. Korean Phys. Soc. 60, 1278 (2012).ADSCrossRefGoogle Scholar
  6. [6]
    F. Xia, T. Muller, R. Golizadeh-Mojarad, M. Freitag, Y. Lin, J. Tsang, V. Perebeinos, and Ph. Avouris, Nano Lett. 9, 1039 (2009).ADSCrossRefGoogle Scholar
  7. [7]
    M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, Nano Lett. 11, 4134 (2011).ADSCrossRefGoogle Scholar
  8. [8]
    J. C. E. Song, M. S. Rudner, C. M. Marcus, and L. S. Levitov, Nano Lett. 11, 4688 (2011).ADSCrossRefGoogle Scholar
  9. [9]
    T. Mueller, F. Xia, and Ph. Avouris, Nat. Photonics 4, 297 (2011).Google Scholar
  10. [10]
    N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, Science 334, 648 (2011).ADSCrossRefGoogle Scholar
  11. [11]
    R. S. Singh, V. Nalla, W. Chen, W. Ji, and A. T. S. Wee, Appl. Phys. Lett. 100, 093116 (2012).ADSCrossRefGoogle Scholar
  12. [12]
    P. R. Wallace, Phys. Rev. 71, 622 (1947).ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).ADSCrossRefGoogle Scholar
  14. [14]
    K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, Phys. Rev. Lett. 101, 196405 (2008).ADSCrossRefGoogle Scholar
  15. [15]
    K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).ADSCrossRefGoogle Scholar
  16. [16]
    S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).ADSCrossRefGoogle Scholar
  17. [17]
    M. Kim, H. A. Yoon, S. Woo, D. Yoon, S. W. Lee, and H. Cheong, Appl. Phys. Lett. 101, 073103 (2012).ADSCrossRefGoogle Scholar
  18. [18]
    A. Grüneis, R. Saito, Ge. G. Samsonidze, T. Kimura, M. A. Pimenta, A. Jorio, A. G. Souza Filho, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 67, 165402 (2003).ADSCrossRefGoogle Scholar
  19. [19]
    A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).ADSCrossRefGoogle Scholar
  20. [20]
    A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, Nano Lett. 6, 2667 (2006).ADSCrossRefGoogle Scholar
  21. [21]
    D. Yoon, H. Moon, H. Cheong, J. S. Choi, A. C. Choi, and B. H. Park, J. Korean Phys. Soc. 55, 1299 (2009).ADSCrossRefGoogle Scholar
  22. [22]
    S. M. Song, J. K. Park, O. J. Sul, and B. J. Cho, Nano Lett. 12, 3887 (2012).ADSCrossRefGoogle Scholar
  23. [23]
    G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).ADSCrossRefGoogle Scholar
  24. [24]
    J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby, Nat. Phys. 4, 144 (2008).CrossRefGoogle Scholar
  25. [25]
    Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, Nat. Phys. 5, 722 (2009).CrossRefGoogle Scholar
  26. [26]
    Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, Nano Lett. 10, 3868 (2010).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  • Minjung Kim
    • 1
  • Duhee Yoon
    • 1
  • Sun Keun Choi
    • 1
  • Hyeonsik Cheong
    • 1
  • Ho Ang Yoon
    • 2
  • Sang Wook Lee
    • 2
  1. 1.Department of PhysicsSogang UniversitySeoulKorea
  2. 2.Division of Quantum Phases and Devices, School of PhysicsKonkuk UniversitySeoulKorea

Personalised recommendations