Skip to main content
Log in

Features of the detrended cross-correlation analysis in the time series between absorbable particulate matter and meteorological factors

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We simulate and analyze the temporal variation characteristics of PM10, which are particles with an aerodynamic diameter of less than 10 microns, and meteorological factors (temperature, humidity, and wind speed) in eight cities on the Korean peninsula. We employ the detrended cross-correlation analysis (DCCA) method to extract the overall tendency of the hourly variation. The relationships between the PM10 density and meteorological factors are established by using cross-correlation coefficients. As a result of non-Asian dust events, we ascertain from weekly intervals that Andong has the largest value, while Mokpo has the smallest one, in the case of the DCCA cross-correlation coefficient between the PM10 and the temperature. Particularly, the cross-correlations can be compared in eight cities, after we examine whether the cross-correlation would be statistically significant from the random number and the shuffled time series surrogations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Baron and K. Willeke, Aerosol Measurement: Principles, Techniques and Applications, 2nd Edition (John Wiley & Sons, New York, 2005).

    Google Scholar 

  2. Y.-S. Xue, L. Yu, P. Xu, Analysis of PM10 concentration time series and climate factor in Hangzhou 2004, Int. Workshop on Geosci. and Remote Sens., Shanghai (2008), p. 575.

    Google Scholar 

  3. H. Y. Son and C. H. Kim, J. Korean Soc. Atmos. Env. 25, 133 (2009).

    Article  MathSciNet  Google Scholar 

  4. X. Querol, A. Alastuey, S. Rodriguez, F. Plana, C. R. Ruiz, N. Cots, G. Massague and O. Puig, Atmo. Env. 35, 6407 (2001).

    Article  Google Scholar 

  5. O. Y. Park and O. Y. Kwon, J. Korean Soc. Atmos. Env. 22, 412 (2006).

    Google Scholar 

  6. Y. S. Jung and J. S. Jung, J. Korea Air Pol. Res. Assoc. 7, 169 (1991).

    Google Scholar 

  7. J. H. Jang, H. W. Lee and S. H. Lee, J. Env. Sci. 21, 189 (2012).

    MathSciNet  Google Scholar 

  8. D. Giri, V. K. Murthy and P. R. Adhikary, Int. J. Env. Res. 2, 49 (2008).

    Google Scholar 

  9. B. Podobnik and H. E. Stanley, Phys. Rev. Lett. 100, 084102 (2008).

    Article  ADS  Google Scholar 

  10. M. Campillo and A. Paul, Science 299, 547 (2003).

    Article  ADS  Google Scholar 

  11. K. Yamasaki, A. Gozolchiani and S. Havlin, Phys. Rev. Lett. 100, 228501 (2008).

    Article  ADS  Google Scholar 

  12. M. Campillo and A. Paul, Science 299, 547 (2003).

    Article  ADS  Google Scholar 

  13. B. Podobnik, D. Horvatic, A. M. Petersen and H. E. Stanley, Proc. Natl. Acad. Sci. 106, 22079 (2009).

    Article  ADS  MATH  Google Scholar 

  14. M. Takayasu and H. Takayasu, Statistical Physics and Economics (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  15. B. Podobnik, I. Grosse, D. Horvatic, S. Ilic, P. Ch. Ivanov and H. E. Stanley, Eur. Phys. J. B 71, 243 (2009).

    Article  ADS  Google Scholar 

  16. P. Samuelsson, E. V. Sukhorukov and M. Buttiker, Phys. Rev. Lett. 91, 157002 (2003).

    Article  ADS  Google Scholar 

  17. A. Cottet, W. Belzig and C. Bruder, Phys. Rev. Lett. 92, 206801 (2004).

    Article  ADS  Google Scholar 

  18. I. Neder, M. Heiblum, D. Mahalu and V. Umansky, Phys. Rev. Lett. 98, 036803 (2007).

    Article  ADS  Google Scholar 

  19. K. Hu, P. Ch. Ivanov, Z. Chen, P. Carpena and H. E. Stanley, Phys. Rev. E 64, 011114 (2001).

    Article  ADS  Google Scholar 

  20. S. V. Buldyrev, A. L. Goldberger, S. Havlin, R. N. Mantegna, M. E. Matsa, C.-K. Peng, M. Simons and H. E. Stanley, Phys. Rev. E 51, 5084 (1995).

    Article  ADS  Google Scholar 

  21. S. Hajian and M. S. Movahed, Physica A 389, 4942 (2010).

    Article  ADS  Google Scholar 

  22. S. Shadkhoo and G. R. Jafari, Eur. Phys. J. B 72, 679 (2009).

    Article  ADS  MATH  Google Scholar 

  23. D. Horvatic, H. E. Stanley and B. Podobnik, Europhys. Lett. 94, 18007 (2011).

    Article  ADS  Google Scholar 

  24. N. Xu, P.-J. Shang and S. Kamae, Nonlin. Dyn. 61, 207 (2010).

    Article  MATH  Google Scholar 

  25. G. F. Zebende, P. A. da Silva and A. M. Filho, Physica A 390, 1677 (2011).

    Article  ADS  Google Scholar 

  26. X.-J. Zhao, P.-J. Shang, A.-J. Lin and G. Chen, Physica A 390, 3670 (2011).

    Article  ADS  Google Scholar 

  27. W.-X. Zhou, Phys. Rev. E 77, 066211 (2008).

    Article  ADS  Google Scholar 

  28. L.-Y. He and S.-P. Chen, Physica A 390, 3806 (2011).

    Article  ADS  Google Scholar 

  29. R. T. Vassoler and G. F. Zebende, Physica A 391, 2438 (2012).

    Article  ADS  Google Scholar 

  30. D. D. Kang and K. Kim, unpublished.

  31. www.physionet.org/physiobank/database/shhpsgdb.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungsik Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, D.D., Lee, D.I., Kwon, BH. et al. Features of the detrended cross-correlation analysis in the time series between absorbable particulate matter and meteorological factors. Journal of the Korean Physical Society 63, 10–17 (2013). https://doi.org/10.3938/jkps.63.10

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.10

Keywords

Navigation