Skip to main content
Log in

Elucidation of the enhanced ferromagnetic origin in Mn-doped zno nanocrystals embedded into a SiO2 matrix

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The origin of the enhanced room temperature ferromagnetism in Mn-doped ZnO (ZnO:Mn) nanocrystals is investigated. ZnO:Mn nanocrystals, which were fabricated by using a laser irradiation method with a 248-nm KrF excimer laser, exhibited two-times increase in the spontaneous magnetization (∼0.4 emu/cm3 at 300 K) compared to the ZnO:Mn thin film (∼0.2 emu/cm3 at 300 K). The increased exchange integral of J 1/k B = 51.6 K in ZnO:Mn nanocrystals, in comparison with the ZnO:Mn thin film (J 1/k B = 46.9 K), is indicative of the enhanced ferromagnetic exchange interaction. This is attributed to the large number of acceptor defects in the SiO2-capped ZnO:Mn nanocrystals. Namely, the holes bound to the acceptor defects form microscopic bound-magneticpolarons with Mn ions; hence, long-range ferromagnetic coupling is enhanced. The results suggest that ferromagnetism in ZnO-based dilute magnetic semiconductors can be controlled by modulating the density of native point defects, which can be chemically and thermodynamically modified during the material synthesis or preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science 287, 1019 (2000).

    Article  ADS  Google Scholar 

  2. K. Sato and H. Katayama-Yoshida, Semicond. Sci. Technol. 17, 367 (2002).

    Article  ADS  Google Scholar 

  3. O. Mounkachi, A. Benyoussef, A. El Kenz, E. H. Saidi and E. K. Hlil, J. Appl. Phys. 106, 093905 (2009).

    Article  ADS  Google Scholar 

  4. E. Liu, N. Zhao, J. Li, X. Du and C. Shi, J. Phys. Chem. C 115, 3368 (2011).

    Article  Google Scholar 

  5. P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson and G. A. Gehring, Nat. Mater. 2, 673 (2003).

    Article  ADS  Google Scholar 

  6. Y. W. Heo, M. P. Ivill, K. Ip, D. P. Norton, S. J. Pearton, J. G. Kelly, R. Rairigh, A. F. Hebard and T. Steiner, Appl. Phys. Lett. 84, 2292 (2004).

    Article  ADS  Google Scholar 

  7. A. K. Pradhan et al., Appl. Phys. Lett. 86, 152511 (2005).

    Article  ADS  Google Scholar 

  8. K. R. Kittilstved, N. S. Norberg and D. R. Gamelin, Phys. Rev. Lett. 94, 147209 (2005).

    Article  ADS  Google Scholar 

  9. K. R. Kittilstved and D. R. Gamelin, J. Am. Chem. Soc. 127, 5292 (2005).

    Article  Google Scholar 

  10. K. R. Kittilstved, W. K. Liu and D. R. Gamelin, Nat. Mater. 5, 291 (2006).

    Article  ADS  Google Scholar 

  11. S. Lee, D. Y. Kim, Y. Shon and C. S. Yoon, Appl. Phys. Lett. 89, 022120 (2006).

    Article  ADS  Google Scholar 

  12. S. Lee, Y. Shon, T. W. Kang, C. S. Yoon, E. K. Kim and D. Y. Kim, Appl. Phys. Lett. 93, 022113 (2008).

    Article  ADS  Google Scholar 

  13. S. Lee, Y. Shon, D. Y. Kim, T. W. Kang and C. S. Yoon, Appl. Phys. Lett. 96, 042115 (2010).

    Article  ADS  Google Scholar 

  14. B. B. Straumal, A. A. Mazilkin, S. G. Protasova, A. A. Myatiev, P. B. Straumal, G. Schütz, P. A. van Aken, E. Goering and B. Baretzky, Phys. Rev. B 79, 205206 (2009).

    Article  ADS  Google Scholar 

  15. M. K. Li, N. M. Kim and T. W. Kang, Appl. Phys. Lett. 91, 103103 (2007).

    Article  ADS  Google Scholar 

  16. N. Kim, H. Kim and T. W. Kang, Appl. Phys. Lett. 91, 113504 (2007).

    Article  ADS  Google Scholar 

  17. S. H. Park, S. W. Ryu, J. J. Kim, W. P. Hong, H. M. Kim, N. Kim, J. W. Kim, T. W. Kang, S. J. Lee and S. N. Yi, Solid State Commun. 143, 395 (2007).

    Article  ADS  Google Scholar 

  18. D. F. Wang, S. Y. Park, Y. S. Lee, Y. P. Lee, J. C. Li and C. Liu, J. Appl. Phys. 103, 07D126 (2008).

    Article  Google Scholar 

  19. D. Wang, S. Park, Y. Lee, T. Eom, S. Lee, Y. Lee, C. Choi, J. Li and C. Liu, Cryst. Growth Des. 9, 2124 (2009).

    Article  Google Scholar 

  20. J. Duan, H. Wang, H. Wang, J. Zhang, S. Wu and Y. Wang, Cryst. Eng. Commun. 14, 1330 (2012).

    Article  Google Scholar 

  21. B. J. Min, K. Tae Won and L. Jong-Lam, Nanotechnology 18, 095703 (2007).

    Article  ADS  Google Scholar 

  22. C. W. Zou, L. X. Shao, L. P. Guo, D. J. Fu and T. W. Kang, J. Cryst. Growth 331, 44 (2011).

    Article  ADS  Google Scholar 

  23. C. J. Cong, L. Liao, Q. Y. Liu, J. C. Li and K. L. Zhang, Nanotechnology 17, 1520 (2006).

    Article  ADS  Google Scholar 

  24. H. L. Yan, X. L. Zhong, J. B. Wang, G. J. Huang, S. L. Ding, G. C. Zhou and Y. C. Zhou, Appl. Phys. Lett. 90, 082503 (2007).

    Article  ADS  Google Scholar 

  25. J. J. Liu, K. Wang, M. H. Yu and W. L. Zhou, J. Appl. Phys. 102, 024301 (2007).

    Article  ADS  Google Scholar 

  26. O. D. Jayakumar, C. Sudakar, A. Vinu, A. Asthana and A. K. Tyagi, J. Phys. Chem. C 113, 4814 (2009).

    Article  Google Scholar 

  27. S. Lee, D. Y. Kim, T. W. Kang and H. K. Cho, J. Appl. Phys. 106, 023711 (2009).

    Article  ADS  Google Scholar 

  28. S. Lee, Y. Lee, Y. Shon, D. Y. Kim and T. W. Kang, Appl. Phys. Lett. 97, 182103 (2010).

    Article  ADS  Google Scholar 

  29. D. Y. Inamdar, A. D. Lad, A. K. Pathak, I. Dubenko, N. Ali and S. Mahamuni, J. Phys. Chem. C 114, 1451 (2010).

    Article  Google Scholar 

  30. W. W. Li, W. L. Yu, Y. J. Jiang, C. B. Jing, J. Y. Zhu, M. Zhu, Z. G. Hu, X. D. Tang and J. H. Chu, J. Phys. Chem. C 114, 11951 (2010).

    Article  Google Scholar 

  31. C.-L. Tsai, Y.-J. Lin, J.-H. Chen, H.-C. Chang, Y.-H. Chen, L. Horng and Y.-T. Shih, Solid State Commun. 152, 488 (2012).

    Article  ADS  Google Scholar 

  32. K. Yakushiji, S. Mitani, F. Ernult, K. Takanashi and H. Fujimori, Phys. Rep. 451, 1 (2007).

    Article  ADS  Google Scholar 

  33. S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton and T. Steiner, Semicond. Sci. Technol. 19, R59 (2004).

    Article  ADS  Google Scholar 

  34. J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).

    Article  ADS  Google Scholar 

  35. J. M. D. Coey and S. A. Chambers, MRS Bull. 33, 1053 (2008).

    Article  Google Scholar 

  36. D. C. Kundaliya et al., Nat. Mater. 3, 709 (2004).

    Article  ADS  Google Scholar 

  37. R. K. Zheng, H. Liu, X. X. Zhang, V. A. L. Roy and A. B. Djurisic, Appl. Phys. Lett. 85, 2589 (2004).

    Article  ADS  Google Scholar 

  38. Y. Yan, S. B. Zhang and S. T. Pantelides, Phys. Rev. Lett. 86, 5723 (2001).

    Article  ADS  Google Scholar 

  39. W. Xu, Z. Ye, T. Zhou, B. Zhao, L. Zhu and J. Huang, J. Cryst. Growth 265, 133 (2004).

    Article  ADS  Google Scholar 

  40. S. Lee, Y. Shon, S.-W. Lee, S. J. Hwang, H. S. Lee, T. W. Kang and D. Y. Kim, Appl. Phys. Lett. 88, 212513 (2006).

    Article  ADS  Google Scholar 

  41. S. Lee, H. S. Lee, S. J. Hwang, Y. Shon, T. W. Kang, D. Y. Kim and E. K. Kim, Mat. Sci. Eng., B 126, 300 (2006).

    Article  Google Scholar 

  42. S. Lee, Y. Shon and D. Y. Kim, Thin Solid Films 516, 4889 (2008).

    Article  ADS  Google Scholar 

  43. B. Lin, Z. Fu and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).

    Article  ADS  Google Scholar 

  44. Y. S. Yu, G. Y. Kim, B. H. Min and S. C. Kim, J. Eur. Ceram. Soc. 24, 1865 (2004).

    Article  Google Scholar 

  45. O. Mondal and M. Pal, J. Mater. Chem. 21, 18354 (2011).

    Article  Google Scholar 

  46. X. M. Fan, J. S. Lian, Z. X. Guo and H. J. Lu, Appl. Surf. Sci. 239, 176 (2005).

    Article  ADS  Google Scholar 

  47. S. B. Zhang, S. H. Wei and A. Zunger, Phys. Rev. B 63, 075205 (2001).

    Article  ADS  Google Scholar 

  48. A. F. Kohan, G. Ceder, D. Morgan and C. G. van de Walle, Phys. Rev. B 61, 15019 (2000).

    Article  ADS  Google Scholar 

  49. F. Oba, S. R. Nishitani, S. Isotani, H. Adachi and I. Tanaka, J. Appl. Phys. 90, 824 (2001).

    Article  ADS  Google Scholar 

  50. J. Spaek, A. Lewicki, Z. Tarnawski, J. K. Furdyna, R. R. Galazka and Z. Obuszko, Phys. Rev. B 33, 3407 (1986).

    Article  ADS  Google Scholar 

  51. S. Kolesnik, B. Dabrowski and J. Mais, J. Supercond. 15, 251 (2002).

    Article  ADS  Google Scholar 

  52. T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara and H. Koinuma, Appl. Phys. Lett. 78, 958 (2001).

    Article  ADS  Google Scholar 

  53. E. Chikoidze, Y. Dumont, F. Jomard, D. Ballutaud, P. Galtier, O. Gorochov and D. Ferrand, J. Appl. Phys. 97, 10D327 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sejoon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Lee, Y. & Kim, D.Y. Elucidation of the enhanced ferromagnetic origin in Mn-doped zno nanocrystals embedded into a SiO2 matrix. Journal of the Korean Physical Society 62, 92–98 (2013). https://doi.org/10.3938/jkps.62.92

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.92

Keywords

Navigation