Skip to main content
Log in

Analysis and modeling of the optical endpoint signal for precision etching

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Endpoint detection is an essential methodology for process control in dry etching for modern semiconductor manufacturing technology. In this paper, an analysis has been performed on the factors, such as the local etch rate, the local film thickness differences, and the open area and the global uniformities of the etch rate and film thickness, affecting the change in the optical emission endpoint signals on a patterned device wafer. Also, a model of the endpoint signal evolution, which includes an effective open ratio, the ratio of the relative open area after considering the local difference in the etch rate and the film thickness to the total open area at the very beginning of the etch process, has been established. Compared to the conventional open ratio, which is the ratio derived from the reticle used for lithography, the effective open ratio is better in explaining and predicting the endpoint signal change. The effective open ratio can be used to design dummy patterns that are used to improve endpoint detection in critical dry etch processes such as gate cuts in logic gate formation, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Basker et al., in Symposium on VLSI Technology (Hsinchu, Taiwan, April 26–28, 2010), p. 19.

  2. M. Gallagher, C. Ebel, J. Fournier, T. Weeks, G. Mac-Dougall, T. Knotts, C. Lam and K. Peterson, in Advanced Semiconductor Manufacturing Conference and Workshop (Cambridge, Massachusetts, November 12–14, 1996), p. 333.

  3. H. H. Yue, S. J. Qin, J. Wiseman and A. Toprac, J. Vac. Sci. Technol., A 19, 66 (2001).

    Article  ADS  Google Scholar 

  4. F. Heinrich, H-P. Stoll and H-C. Scheer, Appl. Phys. Lett. 55, 1474 (1989).

    Article  ADS  Google Scholar 

  5. H. Ren, J. Wu, J. Yan, J. Zhang and W. Wang, in Intelligent Information Technology Application (Nanchang, China, November 21–22 2009), p. 377.

  6. L. Hsu, in International Symposium for Semiconductor Manufacturing (Tokyo, Japan, September 27–29, 2004), p. 111.

  7. R. Jaiswal, I. Sim, A. Jain, T. Q. Chen, L. Meng and Y. Pradeep, in International Symposium for Semiconductor Manufacturing (San Jose, California, September 30–October 2, 2003), p. 370.

  8. N. Layadi, T. Lill, J. Trevor, S. J. Molloy, F. Baumann, M. N. Grimbergen, T. C. Esry and J. Chinn, in Advanced semiconductor Manufacturing Conference and Workshop (Boston, Massachusetts, September 8–10, 1999), p. 227.

  9. C. H. Low, W. S. Chin, M. S. Zhou, S. T. Loong and L. Chan, in IEEE Interconnect Technology Conference (Irvine, California, June 1–3, 1998), p. 265.

  10. M D. Baker, C. D. Himmel and G. S. May, IEEE Trans. Compon. Packag. Manuf. Technol. Part A 18, 478 (1995).

    Article  Google Scholar 

  11. M. W. Kim, S. G. Kim, S. Zhao, S. J. Hong and S. S. Han, ECS Trans. 34, 943 (2011).

    Article  Google Scholar 

  12. E. Ragnoli, S. McLoone, J. Ringwood and N. Macgerailt, in Advanced Semiconductor Manufacturing Conference (Boston, Massachusetts, 5–7 May 2008), p. 156.

  13. T. Reis, in IEEE Advanced Semiconductor Manufacturing Conference (Santa Carla, California, April 23–24, 2001), p. 55.

  14. E. A. Rietman and N. Layadi, IEEE Trans. Semicond. Manuf. 13, 457 (2000).

    Article  Google Scholar 

  15. E. A. Rietman, J. T.-C. Lee and N. Layadi, J. Vac. Sci. Technol., A 16, 1449 (1998).

    Article  ADS  Google Scholar 

  16. E. A. Rietman, N. Layadi and S. W. Downey, J. Vac. Sci. Technol., B 18, 2500 (2000).

    Article  Google Scholar 

  17. J. P. Roland, J. Vac. Sci. Technol., A 3, 631 (1985).

    Article  ADS  Google Scholar 

  18. H. C. Sun, V. Patel, B. Singh, C. K. Ng and E. A. Whittaker, Appl. Phys. Lett. 64, 2779 (1994).

    Article  ADS  Google Scholar 

  19. L. Tao, A. P. Yalin and N. Yamamoto, Rev. Sci. Instrum. 79, 115107 (2008).

    Article  ADS  Google Scholar 

  20. S. Thomas III, H. H. Chen and S. W. Pang, J. Vac. Sci. Technol., B 15, 681 (1997).

    Article  Google Scholar 

  21. B. H. Boo, J. Korean Phys. Soc. 59, 3205 (2011).

    Article  ADS  Google Scholar 

  22. J. R. Ahn, S. G. Lee and C. J. Park, J. Korean Phys. Soc. 59, 2670 (2011).

    Article  Google Scholar 

  23. B. Ji, J. H. Yang, P. R. Badowski and E. J. Karwacki, J. Appl. Phys. 95, 4452 (2004).

    Article  ADS  Google Scholar 

  24. H. C. Neitzert, W. Hirsch and M. Kunst, J. Appl. Phys. 73, 7446 (1993).

    Article  ADS  Google Scholar 

  25. F. Heinrich, H-P. Stoll and H-C. Scheer, Appl. Phys. Lett. 55, 1474 (1989).

    Article  ADS  Google Scholar 

  26. J. J. Chambers, K. Min and G. N. Parsons, J. Vac. Sci. Technol., B 16, 2996 (1998).

    Article  Google Scholar 

  27. G. Chang, J. P. McVittie, J. T. Walker and R. W. Dutton, IEEE Electron Device Lett. 5, 514 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geun Young Yeom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.J., Kim, K.N. & Yeom, G.Y. Analysis and modeling of the optical endpoint signal for precision etching. Journal of the Korean Physical Society 62, 53–58 (2013). https://doi.org/10.3938/jkps.62.53

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.53

Keywords

Navigation