Skip to main content
Log in

Ab initio calculations on the effect of Mn substitution in the κ-carbide Fe3AlC

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We have performed spin-polarized density functional theory calculations on κ-carbides, (Fe, Mn)3AlC, to investigate both the effect of different exchange-correlation functionals and the effect of Mn substitution. Differently from our previous calculations using the Perdew-Wang functional, Fe2MnAlC is found to be the most stable crystal among crystalline κ-carbides by using the Perdew, Burke, and Ernzerhof functional. Supercell calculations to simulate low Mn concentration show that substitutional Mn atoms hardly interact with each other and suggest that a random alloy model can be applied. The stabilization of Fe2MnAlC and its enhanced magnetization are attributed to the formation of a -Mn-C- linear chain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. S. Yang and C. M. Wan, J. Mater. Sci. 24, 3497 (1989).

    Article  ADS  Google Scholar 

  2. G. Frommeyer and U. Brüx, Steel Res. Int. 77, 627 (2006).

    Google Scholar 

  3. O. Acselrad, A. R. Souza, I. S. Kalashnikov and S. S. Camargo, Wear 257, 999 (2004).

    Article  Google Scholar 

  4. Y. Kimura, K. Handa, K. Hayashi and Y. Mishima, Intermetallics 12, 607 (2004).

    Article  Google Scholar 

  5. Y. Sutou, N. Kamiya, R. Umono, I. Ohnuma and K. Ishida, ISIJ Int. 50, 893 (2010).

    Article  Google Scholar 

  6. J. W. Lee and T. F. Liu, Mater. Chem. Phys. 69, 192 (2001).

    Article  Google Scholar 

  7. D. Connétable and P. Magis, Intermetallics 16, 345 (2008).

    Article  Google Scholar 

  8. A. Kellou, T. Grosdidier, J. M. Raulot and H. Aourag, Phys. Status Solidi B 245, 750 (2008).

    Article  ADS  Google Scholar 

  9. Ma. Palm and G. Inden, Intermetallics 3, 443 (1995).

    Article  Google Scholar 

  10. H. Hosada, S. Miyazaki and Y. Mishima, J. Phase Equilib. 22, 394 (2001).

    Article  Google Scholar 

  11. J.-Y. Noh and H. Kim, J. Korean Phys. Soc. 58, 285 (2011).

    Article  Google Scholar 

  12. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    Article  ADS  Google Scholar 

  13. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 7, 3865 (1996).

    Article  ADS  Google Scholar 

  14. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  15. W. Kohn and L. J. Sham, Phys. Rev. 140, B1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  16. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  17. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  ADS  Google Scholar 

  18. G. Kresse and J. Futhmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  19. G. Kresse and J. Futhmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  20. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  21. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  22. P. E. Blöchl, O. Jepsen and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).

    Article  ADS  Google Scholar 

  23. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  24. Y. Wen, C. Wang, Y. Sun, Gu. Liu, M. Nie and L. Chu, J. Alloy. Compd. 489, 289 (2010).

    Article  Google Scholar 

  25. E. Clementi, D. L. Raimondi and W. P. Reinhardt, J. Chem. Phys. 38, 2686 (1963).

    Article  ADS  Google Scholar 

  26. D. Hobbs, J. Hafner and D. Spišák, Phys. Rev. B 68, 014407 (2003).

    Article  ADS  Google Scholar 

  27. In fact, the large formation energy of Fe3AlC in the PW91 calculations seems to originate from the reduced stability of FM bcc Fe because the chemical potential of Fe is about 0.2 eV/atom higher for PW91 than the case of PBE, which is at least twice larger than the differences in other elements (0.09, 0.04, and 0.01 eV/atom for Mn, Al, and C, respectively).

  28. N. I. Medvedeva, R. A. Howell, D. C. Van Aken and J. E. Medvedeva, Phys. Rev. B 81, 012105 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanchul Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noh, JY., Kim, H. Ab initio calculations on the effect of Mn substitution in the κ-carbide Fe3AlC. Journal of the Korean Physical Society 62, 481–485 (2013). https://doi.org/10.3938/jkps.62.481

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.481

Keywords

Navigation