Skip to main content
Log in

Influence of the pore fluid on the phase velocity in bovine trabecular bone In Vitro: Prediction of the biot model

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The present study aims to investigate the influence of the pore fluid on the phase velocity in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 20 marrow-filled and water-filled bovine femoral trabecular bone samples. The mean phase velocities at frequencies between 0.6 and 1.2 MHz exhibited significant negative dispersions for both the marrow-filled and the water-filled samples. The magnitudes of the dispersions showed no significant differences between the marrow-filled and the water-filled samples. In contrast, replacement of marrow by water led to a mean increase in the phase velocity of 27 m/s at frequencies from 0.6 to 1.2 MHz. The theoretical phase velocities of the fast wave predicted by using the Biot model for elastic wave propagation in fluid-saturated porous media showed good agreements with the measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Laugier, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1179 (2008).

    Article  Google Scholar 

  2. G. P. Liney et al., J. Magn. Reson. Imaging 26, 787 (2007).

    Article  Google Scholar 

  3. C. M. Langton, C. F. Njeh, R. Hodgskinson and J. D. Currey, Bone 18, 495 (1996).

    Article  Google Scholar 

  4. C. F. Njeh and C. M. Langton, Br. J. Radiol. 70, 504 (1997).

    Google Scholar 

  5. B. K. Hoffmeister, J. A. Auwarter and J. Y. Rho, Phys. Med. Biol. 47, 3419 (2002).

    Article  Google Scholar 

  6. J. M. Alves et al., Calcified Tiss. Int. 58, 363 (1996).

    Google Scholar 

  7. P. H. F. Nicholson and M. L. Bouxsein, Ultrasound Med. Biol. 28, 369 (2002).

    Article  Google Scholar 

  8. M. Pakula, F. Padilla and P. Laugier, J. Acoust. Soc. Am. 126, 3301 (2009).

    Article  ADS  Google Scholar 

  9. M. A. Biot, J. Acoust. Soc. Am. 28, 168 (1956).

    Article  MathSciNet  ADS  Google Scholar 

  10. M. A. Biot, J. Acoust. Soc. Am. 28, 179 (1956).

    Article  MathSciNet  ADS  Google Scholar 

  11. T. J. Haire and C. M. Langton, Bone 24, 291 (1999).

    Article  Google Scholar 

  12. K. I. Lee, J. Acoust. Soc. Am. 130, EL399 (2011).

    Article  ADS  Google Scholar 

  13. R. D. Stoll and G. M. Bryan, J. Acoust. Soc. Am. 47, 1440 (1970).

    Article  ADS  Google Scholar 

  14. K. I. Lee, E. R. Hughes, V. F. Humphrey, T. G. Leighton and M. J. Choi, Phys. Med. Biol. 52, 59 (2007).

    Article  Google Scholar 

  15. J. G. Berryman, Appl. Phys. Lett. 37, 382 (1980).

    Article  ADS  Google Scholar 

  16. L. J. Gibson, J. Biomech. 18, 317 (1985).

    Article  Google Scholar 

  17. K. I. Lee, J. Korean Phys. Soc. 59, 2721 (2011).

    Article  Google Scholar 

  18. K. Mizuno, M. Matsukawa, T. Otani, P. Laugier and F. Padilla, J. Acoust. Soc. Am. 125, 3460 (2009).

    Article  ADS  Google Scholar 

  19. P. S. Kurzeja and H. Steeb, J. Acoust. Soc. Am. 131, EL454 (2012).

    Article  ADS  Google Scholar 

  20. P. H. F. Nicholson et al., Phys. Med. Biol. 41, 2421 (1996).

    Article  Google Scholar 

  21. R. Strelitzki and J. A. Evans, Eur. J. Ultrasound 4, 205 (1996).

    Article  Google Scholar 

  22. P. Droin, G. Berger and P. Laugier, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 581 (1998).

    Article  Google Scholar 

  23. K. A. Wear, Ultrasound Med. Biol. 26, 641 (2000).

    Article  Google Scholar 

  24. K. A. Wear, J. Acoust. Soc. Am. 121, 2431 (2007).

    Article  ADS  Google Scholar 

  25. K. A. Wear, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1079 (2001).

    Article  Google Scholar 

  26. K. R. Waters and B. K. Hoffmeister, J. Acoust. Soc. Am. 118, 3912 (2005).

    Article  ADS  Google Scholar 

  27. G. Haiat, A. Lhemery, F. Renaud, F. Padilla, P. Laugier and S. Naili, J. Acoust. Soc. Am. 124, 4047 (2008).

    Article  ADS  Google Scholar 

  28. C. C. Anderson et al., J. Acoust. Soc. Am. 124, 1781 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Il Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.I. Influence of the pore fluid on the phase velocity in bovine trabecular bone In Vitro: Prediction of the biot model. Journal of the Korean Physical Society 62, 48–52 (2013). https://doi.org/10.3938/jkps.62.48

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.48

Keywords

Navigation