Skip to main content
Log in

Effects of CH4 gas and substrate temperature on hydrogenated amorphous carbon (a-C:H) films fabricated using DC facing target sputtering

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Hydrogenated amorphous carbon (a-C:H) films were deposited on soda-lime glass substrates by using a DC facing target sputtering system. The effects of the CH4 gas and the substrate temperature on the deposition rate and the properties of the film were investigated. We found that the deposition rate of the film grown under an Ar-CH4 plasma was about three times larger than that of the film grown under an Ar plasma. The CH4 gas played a role as an additional carbon precursor to increase the deposition rate, which could be seen as a CH* peak at 431 nm in the optical emission spectra of the Ar-CH4 plasma. The sp 3 fraction in the film increased gradually from 32 to 37% as the substrate temperature was increased from 100 °C to 400 °C. The optical band-gap energy of the a-C:H films varied from 3.9 to 3.98 eV, and this variation was closely related to changes in the sp3 fraction. Overall, these results indicate that the addition of CH4 gas to a-C:H film deposition enhanced the deposition rate by changing the deposition mechanism from physical to reactive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Robertson, Mater. Sci. Eng. R 37, 129 (2002).

    Article  Google Scholar 

  2. J. Robertson, Surf. Coat. Technol. 50, 185 (1992).

    Article  Google Scholar 

  3. P. K. Chu and L. Li, Mater. Chem. Phys. 96, 253 (2006).

    Article  Google Scholar 

  4. H. T. Kim and S. H. Sohn, Vacuum 86, 2148 (2012).

    Article  ADS  Google Scholar 

  5. Y. Miyajima, S. J. Henley, G. Adamopoulos, V. Stolojan, E. Garcia-Caurel, B. Drévillon, J. M. Shannon and S. R. P. Silva, J. Appl. Phys. 105, 073521 (2009).

    Article  ADS  Google Scholar 

  6. F. C. Marques and R. G. Lacerda, Braz. J. Phys. 30, 527 (2000).

    Article  ADS  Google Scholar 

  7. H. P. Wang and J. Lin, Surf. Coat. Technol. 204, 2246 (2010).

    Article  Google Scholar 

  8. S. Sivaram, Chemical Vapor Deposition: Thermal and Plasma Deposition of Electronic Materials (Van Nostrand Reinhold, New York, 1995).

    Google Scholar 

  9. F. C. Marques, R. G. Lacerda, A. Chapi, V. Stolojan, D. C. Cox and S. R. P. Silva, Appl. Phys. Lett. 83, 3099 (2003).

    Article  ADS  Google Scholar 

  10. J. P. Sullivan, T. A. Friedmann and A. G. Baca, J. Electronic Mater. 26, 1021 (1997).

    Article  ADS  Google Scholar 

  11. S. M. Rossnagel, J. J. Cuomo and W. D. Westwood, Handbook of Plasma Processing Technology: Fundamentals, Etching, Deposition, and Surface Interactions (Noyes Publications, Park Ridge, 1990).

    Google Scholar 

  12. H. T. Kim, J. Y. Park and C. H. Park, Korean J. Chem. Eng. 29, 676 (2012).

    Article  Google Scholar 

  13. J. R. Shi, Y. J. Xu and J. Zhang, Surf. Coat. Technol. 198, 437 (2005).

    Article  Google Scholar 

  14. J. R. Shi and J. P. Wang, Thin Solid Films 420, 172 (2002).

    Article  ADS  Google Scholar 

  15. S. S. Nathan, G. K. Muralidhar, G. M. Rao and S. Mohan, Thin Solid Films 292, 20 (1997).

    Article  ADS  Google Scholar 

  16. M. Ohring, Materials Science of Thin Films (Academic Press, San Diego, 2002).

    Google Scholar 

  17. K. A. Jackson, Kinetic Process: Crystal Growth, Diffusion, and Phase Transitions in Materials (Wiley-VCH, Weinheim, 2004).

    Book  MATH  Google Scholar 

  18. NIST, Atomic Spectra Database Lines Data at http://www.nist.gov.

  19. H. T. Kim, D. K. Park and W. S. Choi, J. Korean Phys. Soc. 42, S916 (2003).

    Google Scholar 

  20. A. V. Eletskii and B. M. Smirnov, Phys. Usp. 39, 1137 (1996).

    Article  ADS  Google Scholar 

  21. S. V. Avtaeva and T. M. Lapochkina, Plasma Phys. Rep. 33, 774 (2007).

    Article  ADS  Google Scholar 

  22. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).

    Article  ADS  Google Scholar 

  23. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S. R. P. Silva, J. Appl. Phys. 80, 440 (1996).

    Article  ADS  Google Scholar 

  24. J. E. Castle, H. Chapman-Kpodo, A. Proctor and A. M. Salvi, J. Electron. Spectrrosc. Relat. Phenom. 106, 65 (2000).

    Article  Google Scholar 

  25. J. Tauc, R. Grigorovici and A. Vancu, Phys. Status Solidi 15, 627 (1966).

    Article  Google Scholar 

  26. J. Mort and F. Jansen, Plasma Deposited Thin Films (CRC Press Inc., Boca Raton, 1986).

    Google Scholar 

  27. B. Dishler, A. Bubenzer and O. Koidl, Solid State Commun. 48, 105 (1983).

    Article  ADS  Google Scholar 

  28. C. Oppedisano and A. Tagliaferro, Appl. Phys. Lett. 75, 3650 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilsu Rhee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhak, J., Kim, C., Rhee, I. et al. Effects of CH4 gas and substrate temperature on hydrogenated amorphous carbon (a-C:H) films fabricated using DC facing target sputtering. Journal of the Korean Physical Society 62, 258–262 (2013). https://doi.org/10.3938/jkps.62.258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.258

Keywords

Navigation