Skip to main content

Relaxivities of hydrogen protons in aqueous solutions of gold-coated manganese ferrite nanoparticles

Abstract

Manganese ferrite nanoparticles were synthesized using the reverse micelle method and were coated with gold. TEM (transmission electron microscope) pictures showed that the shapes of the synthesized nanoparticles were almost spherical with an average diameter of 12 nm and a standard error of 4 nm. The bonding status of gold on the nanoparticle surfaces was checked using a Fourier transform infrared spectrometer (FTIR). The T1 and the T2 relaxation times of the hydrogen protons in aqueous solutions of the coated manganese-ferrite nanoparticles were determined using magnetic resonance imaging (MRI). The 1/T 1 and the 1/T 2 versus concentration curves for the nanoparticles showed a linear dependence. The T1 and the T2 relaxivities were found to be r 1 = 6.01 ± 0.12 and r 2 = 83.3 ± 0.55 mM−1 s −1. The ratio of r 2/r 1 was 13.9; this is larger than the ratios of r 2/r 1 for commercial T2 MRI contrast agents, indicating that the nanoparticles studied herein can serve as a T2 contrast agent with high efficacy.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. R. DeGuire, G. Kalonji and R. C. O’Handley, J. Am. Ceram. Soc. 73, 3002 (1990).

    Article  Google Scholar 

  2. [2]

    M. A. Willard, Y. Nakamura, E. D. Laughlin and E. M. McHenry, J. Am. Ceram. Soc. 82, 3342 (1999).

    Article  Google Scholar 

  3. [3]

    M. Ishikawa, H. Tanaka and T. Kawai, Appl. Phys. Lett. 86, 222504 (2005).

    ADS  Article  Google Scholar 

  4. [4]

    C. Rath, N. C. Mishra, S. Anand, R. P. Das, C. Upadhyay and H. C. Verma, Appl. Phys. Lett. 76, 475 (2000).

    ADS  Article  Google Scholar 

  5. [5]

    D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, M. Muhammed, J. Magn. Magn. Mater. 225, 30 (2001).

    ADS  Article  Google Scholar 

  6. [6]

    J. Popplewell and L. Sakhnani, J. Magn. Magn. Mater. 149, 72 (1995).

    ADS  Article  Google Scholar 

  7. [7]

    C. W. Jung and P. Jacobs, Magn. Res. Imag. 13, 661 (1995).

    Article  Google Scholar 

  8. [8]

    S. W. Hong and Ilsu Rhee, Inter. J. Mag. Res. Imag. 1, 15 (2007).

    Google Scholar 

  9. [9]

    S. F. Chin, M. Makha, C. L. Raston and M. Saunders, Chem. Commun. 1948 (2007).

    Google Scholar 

  10. [10]

    S. Hong and I. Rhee, J. Korean Phys. Soc. 51, 1453 (2007).

    ADS  Article  Google Scholar 

  11. [11]

    J. Choi, J. C. Kim, Y. B Lee, I. S. Kim, Y. K. Parka and N. H. Hur, Chem. Commun. 1644 (2007).

    Google Scholar 

  12. [12]

    T. Ahmad, I. Rhee, S. Hong, Y. Chang and J. Lee, J. Nanosci. Nanotech. 11, 5645 (2011).

    Article  Google Scholar 

  13. [13]

    T. Ahmad, I. Rhee, S. Hong, Y. Chang and J. Lee, J. Korean Phys. Soc. 57, 1545 (2010).

    Article  Google Scholar 

  14. [14]

    S. F. Chin, K. S. Iyer and C. L. Raston, Crystal Growth & Design 9, 2685 (2009).

    Article  Google Scholar 

  15. [15]

    M. C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).

    Article  Google Scholar 

  16. [16]

    Y. Xia, B. Gates, Y. Yin and Y. Lu, Adv. Mater. 12, 693 (2000).

    Article  Google Scholar 

  17. [17]

    D. S. Grubisha, R. J. Lipert, H. Y. Park, J. Driskell and M. D. Porter, Anal. Chem. 75, 5936 (2003).

    Article  Google Scholar 

  18. [18]

    Z. C. Xu, Y. L. Hou and S. H. Sun, J. Am. Chem. Soc. 129, 8698 (2007).

    Article  Google Scholar 

  19. [19]

    J. Zhang, M. Post, T. Veres, Z. J. Jakubek, J. Guan, D. Wang, F. Normandin, Y. Deslandes and B. Simard, J. Phys. Chem. B 110, 7122 (2006).

    Article  Google Scholar 

  20. [20]

    M. Spasova, V. Salgueirino-Maceira, A. Schlachter, M. Hilgendorff, M. Giersig, L. M. Liz-Marzan and M. Farle, J. Mater. Chem. 15, 2095 (2005).

    Article  Google Scholar 

  21. [21]

    W. Lee, M. G. Kim, J. Choi, J. Park, S. J. Ko, S. J. Oh and J. Cheon, J. Am. Chem. Soc. 127, 16090 (2005).

    Article  Google Scholar 

  22. [22]

    L. Y. Wang, J. Luo, Q. Fan, M. Suzuki, I. S. Suzuki, M. H. Engelhard, Y. H. Lin, N. Kim, J. Q. Wang and C. J. Zhong, J. Phys. Chem. B 109, 21593 (2005).

    Article  Google Scholar 

  23. [23]

    S. J. Cho, A. M. Shahin, G. J. Long, J. E. Davies, K. Liu, F. Grandjean and S. M. Kauzlarich, Chem. Mater. 18, 960 (2006).

    Article  Google Scholar 

  24. [24]

    C. J. O’Connor, V. Kolesnichenko, E. Carpenter, C. Sangregorio, W. Zhou, A. Kumbhar, J. Sims and F. Agnoli, Synth. Met. 122, 547 (2001).

    Article  Google Scholar 

  25. [25]

    J. Lin, W. Zhou, A. Kumbhar, J. Wiemann, J. Fang, E. E. Carpenter and C. J. O’Connor, J. Solid State Chem. 159, 26 (2001).

    ADS  Article  Google Scholar 

  26. [26]

    G. K. Kouassi and J. Irudayaraj, Anal. Chem. 78, 3234 (2006).

    Article  Google Scholar 

  27. [27]

    V. M. Burojeanu, L. Fournes, A. Wattiaux, J. Etourneau and E Segal, Inter. J. Inorg. Mater. 3, 525 (2001).

    Article  Google Scholar 

  28. [28]

    B. Aslibeiki, P. Kameli, H. Salamati, M. Eshraghi and T. Tahmasebi, J. Mag. Mag. Mater. 322, 2929 (2010).

    ADS  Article  Google Scholar 

  29. [29]

    C. K. Lo, D. Xiao and M. M. F. Choi, J. Mater. Chem. 17, 2418 (2007).

    Article  Google Scholar 

  30. [30]

    S. S. Shankar, A. Ahmad, R. Pasricha, M. I. Khan, R. Kumar and M. Sastry, J. Colloid Interface Sci. 274, 69 (2004).

    Article  Google Scholar 

  31. [31]

    A. Kumar, S. Mandal, P. R. Selvakannan, R. Pasricha, A. B. Mandale and M. Sastry, Langmuir 19, 6277 (2003).

    Article  Google Scholar 

  32. [32]

    C. Yang, R. Jie, L. Jianbo and L. Yan, Mat. Lett. 64, 1570 (2010).

    Article  Google Scholar 

  33. [33]

    H. Chen and J. He, J. Phys. Chem. C 112, 17540 (2008).

    Article  Google Scholar 

  34. [34]

    Y. Okuhata, Adv. Drug Delivery Rev. 37, 121 (1999).

    Article  Google Scholar 

  35. [35]

    The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, edited by A. E. Merbach and E. Toth (John Wiley & Sons, Ltd., New York, 2001).

    Google Scholar 

  36. [36]

    T. Ahmad, H. Bae, I. Rhee, Y. Chang, J. Lee and S. Hong, Curr. Appl. Phys. 12, 969 (2012).

    ADS  Article  Google Scholar 

  37. [37]

    M. Suzuki, S. Wataru, K. Yoshio, H. Hiroyuki and K. Takeshi, Bull. Chem. Soc. Jpn. 69, 1143 (1996).

    Article  Google Scholar 

  38. [38]

    K. E. Kellar, D. K. Fujii, W. H. Gunther, K. B. Sb, A. Bjrnerud, M. Spiller and S. H. Koenig, J. Magn. Res. Imag. 11, 488 (2000).

    Article  Google Scholar 

  39. [39]

    S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst and R. N. Muller, Chem. Rev. 108, 2064 (2008).

    Article  Google Scholar 

  40. [40]

    A. J. L. Villaraza, A. Bumb and M. W. Brechbiel, Chem. Rev. 110, 2921 (2010).

    Article  Google Scholar 

  41. [41]

    G. P. Yan, L. Robinson and P. Hogg, Radiography 13, e5 (2007).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ilsu Rhee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahmad, T., Iqbal, Y., Bae, H. et al. Relaxivities of hydrogen protons in aqueous solutions of gold-coated manganese ferrite nanoparticles. Journal of the Korean Physical Society 62, 1696–1701 (2013). https://doi.org/10.3938/jkps.62.1696

Download citation

Keywords

  • Mn-Fe2O4 Nanoparticles
  • Gold
  • Contrast agent for MRI
  • T1 and T2 relaxivities