Skip to main content
Log in

Current-driven domain wall motion in artificial magnetic domain structures

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report progress towards optimisation of artificial magnetic domain structures for efficient spin transfer torque domain wall (DW) motion. Co/Pt multilayer samples have been sputtered on (100) Si/SiO2 substrates and perpendicular magnetic anisotropy confirmed using polar magneto-optical Kerr effect (MOKE) measurements. The influence of the thickness of Co and Pt layers on the coercivity and switching behaviour was systematically investigated and the conditions established for realising well-suited structures with medium coercivity (∼100 Oe) and sharp switching fields. Optimised Co/Pt multilayer films have been lithographically patterned into nanowire devices for time-resolved extraordinary Hall effect (EHE) measurements. Our devices are based on 50 Ω coplanar waveguides incorporating single and double Hall cross structures. The coercivity of the region surrounding the Co/Pt Hall crosses was reduced by local focussed ion beam (FIB) irradiation allowing the controlled nucleation of domain walls at the edges of these regions by application of an appropriate field sequence. We describe polar MOKE experiments that show how DC currents lead to asymmetric switching of these artificial domains due to current-assisted DW motion across them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. P. Parkin, US Patents Nos. 6.834.005, 6.898.132,6.920.062, 7.031.178 & 7.236.386 (2004–2007).

  2. Hayashi et al., PRL 96, 197207 (2006).

    Article  ADS  Google Scholar 

  3. Hayashi et al., PRL 97, 207205 (2006).

    Article  ADS  Google Scholar 

  4. Thomas et al., Nature 443, 197 (2006).

    Article  ADS  Google Scholar 

  5. Hayashi et al., Nature Physics 3, 21 (2007).

    Article  ADS  Google Scholar 

  6. Hayashi et al., PRL 98, 037204 (2007).

    Article  ADS  Google Scholar 

  7. S. Hashimoto et al., J. Appl. Phys. 67, 4429 (1990).

    Article  ADS  Google Scholar 

  8. C. Chappert et al., Science 280, 1919 (1998).

    Article  ADS  Google Scholar 

  9. T. Devolder et al., Appl. Phys. Lett. 74, 3383 (1999).

    Article  ADS  Google Scholar 

  10. J. Fassbender et al., J. Phys D: Appl. Phys. 37, R179 (2004).

    Article  ADS  Google Scholar 

  11. S. Hashimoto et al., J. Appl. Phys. 67, 4429 (1990).

    Article  ADS  Google Scholar 

  12. C. Chappert et al., Science 280, 1919 (1998).

    Article  ADS  Google Scholar 

  13. T. Devolder et al., Appl. Phys. Lett. 74, 3383 (1999).

    Article  ADS  Google Scholar 

  14. C. Vieu, J. Gierak, H. Launois, T. Aign, P. Meyer, J. P. Jamet, J. Ferre, C. Chappert, T. Devolder, V. Mathet and H. Bernas, J. Appl. Phys. 91, 3103 (2002).

    Article  ADS  Google Scholar 

  15. K. Wang, M.-C. Wu, S. Lepadatu, J. S. Claydon, C. H. Marrows and S. J. Bending, J. Appl. Phys. 110, 083913 (2011).

    Article  ADS  Google Scholar 

  16. A. Aziz, S. J. Bending, H. Roberts, S. Crampin, P. J. Heard and C. H. Marrows, J. Appl. Phys. 98, 124102 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hari, M., Wang, K., Bending, S.J. et al. Current-driven domain wall motion in artificial magnetic domain structures. Journal of the Korean Physical Society 62, 1534–1538 (2013). https://doi.org/10.3938/jkps.62.1534

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.1534

Keywords

Navigation